
 

 

 

 

*Corresponding author email: r.hamad8989@gmail.com  

DOI: https://doi.org/10.70470/EDRAAK/2024/008  

                      

 
 
 

Research Article 

Predictive Modeling and Analysis in Genetic Diseases: A Comprehensive Review of 

Recent Advances 

Rana Khalid Hamad1,*,   
 

1 Islamic university of Lebanon  
 

A R T I C L E  I N F O 
 

Article History 

Received 12 Mar 2024 

Revised: 2 May 2024 

Accepted 3 Jun 2024 

Published 22 Jun 2024 

 
Keywords 

Predictive Modeling, 

Genetic Diseases, 

Machine Learning, 

Text Mining, 

Deep Learning.

 

A B S T R A C T  

This paper provides a comprehensive analysis of current advancements in predictive modeling and 
genetic disease classification. We delve into various machine learning techniques and text mining 
technologies that have significantly contributed to understanding genetic disorders and extracting 
valuable information from vast unstructured data. Our literature review examines key studies from recent 
years that have utilized machine learning models, including Naive Bayes, support vector machines, and 
deep learning frameworks, to improve the predictive accuracy of genetic disease outcomes. This work is 
aimed at enhancing the framework for predicting complex diseases using advanced computational 
methods. 

 

 

 

 

 
  

1. INTRODUCTION 

This The exploration of genetic diseases and the application of text mining to extract meaningful information from vast 

unstructured data sets have become pivotal areas of study in modern biomedical research. The rapid accumulation of genetic 

data has necessitated advanced computational approaches to understand and predict genetic disorders effectively. Machine 

learning techniques have shown promising results in deciphering complex biological data, aiding significantly in drug 

discovery and disease prediction [1][3][4]. This chapter discusses the theoretical background and practical applications of 

these computational techniques, with a particular focus on the challenges associated with analyzing genetic information and 

extracting features from unstructured text. 

Genetic disorders, which arise from mutations in DNA or from quantitative deficiencies in genetic material, present a 

complex challenge for diagnosis and treatment. The ability to classify and predict these diseases based on genetic data varies 

significantly by algorithm and performance metric, highlighting the need for robust computational models [2]. Concurrently, 

the vast majority of data available to researchers remains unstructured and is scattered across various platforms without a 

clear hierarchy [7]. Text mining, therefore, emerges as a critical tool, transforming raw data into structured formats that can 

be easily analyzed and interpreted. Techniques in natural language processing (NLP) have evolved to assist in this 

transformation, making it possible to uncover hidden patterns and insights that would otherwise be inaccessible [6]. 

The methodological advancements in text analytics have also seen cross-industry standardization efforts, aiming to enhance 

the reproducibility and efficiency of text mining applications across different fields [5]. These developments underscore the 

significance of integrating text mining with genetic research to address the few shot dilemma where models must make 

accurate predictions from limited data inputs, a common scenario in genetic studies where large datasets may not always be 

available. 

By reviewing and integrating insights from the provided studies, this chapter aims to build a comprehensive understanding 

of the current landscape and future directions in the prediction and analysis of genetic diseases through advanced 

computational methods. Through this exploration, we will highlight both the capabilities and the limitations of current 

technologies, setting the stage for further advancements in the field. 
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This introduction should set a strong, research-driven foundation for your research, linking the theoretical and practical 

aspects of genetic diseases and text mining while pointing to the importance of integrating these areas to push the boundaries 

of what's possible in medical research and disease prediction. 

 

 
Fig 1. process of text mining 

 

2. TEXT MINING TECHNOLOGIES 

Information Retrieval: Most people think of Google when they think of information retrieval (IR) systems because of how 

effectively it can identify web pages on the World Wide Web that include terms that a user has provided. Document retrieval 

is expanded into document mining, which involves processing the documents that have been found to find the information 

that is useful to the user [10]. As a result, after document retrieval, there is an information extraction stage or a text 

summarizing stage that concentrates on the user's inquiry. In its widest sense, information retrieval (IR) includes both 

knowledge retrieval and information retrieval [11]. The first efforts at an automated indexing system date back to 1975, 

making this a reasonably established field of study. With the proliferation of the Internet and the subsequent need for 

sophisticated search engines, its profile grew. 

Extraction Information: Extracting relevant data from text is the focus of information extraction (IE) techniques. Entity, 

event, and connection extraction from unstructured or semi-structured text are all highlighted. Most relevant information, 

including names, addresses, and companies, may be gleaned from material that hasn't been fully comprehended [12]. 

Meaningful data mining from texts is at the heart of IE. The term "information extraction" (IE) refers to the process of 

building a picture out of bits and pieces of information found in texts that are both relevant and relevant to the picture. 

Categorization: A kind of "supervised" learning, text categorization requires that labels be provided for each document used 

in the training phase. Its primary intended use at the time was for controlled-word indexing of scholarly publications. The 

availability of ever- increasing amounts of digital text documents coupled with the need to arrange them for easy usage led 

to the field's maturation in the 1990s [13]. The process of categorization involves using the content of documents written in 

a standard language to place them into a set of categories. It's a group of written materials, and it's the process of determining 

which subject or themes best apply to each. From the standard automated or semi-automatic indexing of texts to the 

distribution of targeted adverts, spam filtering, the arrangement of the World Wide Web into hierarchical catalogs, the 

production of metadata instantly, the recognition of text genres, topic tracking, and many more purposes [14]. The study of 

how to automatically classify texts begins in the early 1960s. It is now a very active area of study in the science of machine 

learning. 

Clustering: Clustering is a fascinating and crucial part of text mining. The goal is to identify hidden patterns in data and 

classify it into manageable chunks for in-depth research. In this method, items are sorted into clusters without any human 

oversight. For this challenge, you will be provided with a set of data that has not been labeled and asked to organize them 

into meaningful clusters. Object labels are derived entirely from the information collected. For instance, document clustering 

facilitates retrieval by establishing connections between related documents, facilitating the retrieval of all such documents 

after a single one has been determined to be relevant to a query [8]. Cluster analysis has numerous practical uses in fields as 

diverse as biology, pattern recognition, data mining, picture segmentation, document retrieval, business intelligence, pattern 

classification, security, and Web search. To accomplish data dispersion, cluster analysis may be employed independently as 

a text mining tool, or as a pre-processing step for other text mining algorithms to operate on the found clusters. 

Summarization: Despite being an age-old problem in the field of text mining, researchers in the fields of artificial intelligence, 

machine learning, and NLP would do well to pay more attention to the task of summarizing texts. A text is summarized when 

a shorter version that nevertheless contains important information is generated automatically. When working for a large 

corporation, researchers often write executive summaries or highlight key aspects from papers rather than reading them in 
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their entirety [15]. A summary is a condensed issuance of a longer text that accurately conveys the essential points of the 

originals while cutting down on unnecessary detail. Technologies for text summarization include fuzzy logic, semantic 

graphs, decision trees, regression models, neural networks, and swarm intelligence. The quality of classifier creation varies 

widely and is very text-type dependent across the various approaches; this is an issue shared by all of them. 

 

3. FEATURE EXTRACTION 

Unlike texture features, which use clusters of pixels, color features only employ individual pixels. A human's visual system 

relies on an image's texture for both interpretation and recognition. Texture is a visual explanation for the homogeneity 

property of visual patterns. Two major categories of texture features (TF) are spatial TF and spectral TF. Sections 2 illustrates 

the numerous sub-divisions. 

Spectral TF requires pictures to be translated into the frequency domain (FD) before feature extraction can take place, while 

spatial TF relies on pixel-level calculations in the original image. Gabor filters are often employed for TF extraction since 

they sample the FD of a picture by describing the orientation parameters and center frequency. The differences between these 

two techniques for TF extraction. Image segmentation is one application where spatial TF extraction is often employed [16]. 

Differences in the spatial structures of geometric or stochastic characteristics are mapped into their corresponding gray values 

using this method. 

 

4. TERM FREQUENCY 

 

Differentiating benign from malignant SPNs relied heavily on the image texture properties. Texture features may be useful 

to define local properties of images, quantify qualities like smoothness, roughness, and regularity, and portray particular 

recurring local patterns and arrangement regularity in designated image regions. The GLCM technique was used to examine 

the texture features of SPNs; this technique, which is based on the co-occurrence matrix model and can be used to determine 

the correlation between two greyscale points that are different in distance and direction, reflected the integrated information 

of direction, spacing, and magnitude of changes in image greyscales to describe the roughness and repeated directions of 

image texture. 

 

5. TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY 

Many terms that are included in word vectors for clustering have no relevance to the process of extracting features from text. 

Although highly computationally costly, this has no impact on the accuracy of feature extraction. As a result, once we have 

the entire word vector, we can compute the TF-IDF for each word in the target text and then filter out any words whose TF-

IDF is lower than the threshold q that we have set. 

Count(w) is the number of times the word w appears in the text, and TF(w) in (1) represents this frequency. Word 

occurrences in the target text and in corpus samples j t are denoted by count w, whereas the total number of samples 

containing word w in the corpus is denoted by m. 

 

                                                                              𝑐𝑜𝑢𝑛𝑡 (𝑤)  

                                              𝑇𝐹(𝑤) =   

        𝑐𝑜𝑢𝑛𝑡(𝑤𝑡𝑗) 

                                     (1) 

 
In equation (2), IDF(w) is the inverse file frequency of the word w, m is the number of samples in the corpus that include 

the word w, and n is the total number of texts in the corpus. 

 

𝐼𝐷𝐹 ( 𝑤) = ln (     ) (2) 
 
 

Equation (3) determines the word's TF-IDF value in accordance with equations (1) and (2). 

 

 

 

 
∑𝑚  
𝑐𝑜𝑢𝑛𝑡 

After the low TF-IDF word is removed, equation (4) yields a set W final of all the words that are left, where Ws stands for 

a collection of words Ws whose TF-IDF is less than . 

𝑤𝑓𝑖𝑛𝑎𝑙 = U𝑚 𝑤𝑡𝑗 − 𝑤𝑠(𝑇𝐹𝐼𝐷𝐹(𝑤𝑠) < 𝜃) (4) 

It's possible you'll want to know why we don't just train the word vector without including words with a TF-IDF below ; 

∑ 
𝑚 

𝑗=1 

n 

𝑚 + 1 
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after all, that seems like it would require less work. Word2vector's mathematical process dictates that in order to train word 

vectors more precisely, it must take into account all words and their circumstances. The results of the training will be affected 

if terms that seem unrelated are left out. 

Input:  

R is the set of prediction rules  

D is the set of documents 

Output: F is the set of output file  

Function: string Matching (R,D) 

F= Ø 

For each rule in prediction rule base R do 

For each example d in D 

If refers to d(R,D) 

ADD information to F 

Return F 

Algorithm TF – IDF 

 

6. MACHINE LEARNING 

Understanding and creating "learning" methods, or methods that use data to improve performance on a certain set of tasks, 

is the focus of the field of study known as machine learning (ML). It's often cited as an example of AI's usefulness. Machine 

learning algorithms may generate predictions and judgments without being explicitly programmed to do so by building a 

model using sample data (also called training data). Computer vision, speech recognition, email filtering, medicine, 

agriculture, and other fields rely on machine learning algorithms since it is difficult or impossible to design conventional 

algorithms that can perform the necessary tasks. 

Statistical learning is a subset of machine learning, although not all machine learning is statistical learning. Computational 

statistics is concerned with using computers to make predictions. Tools, theory, and application fields from the study of 

mathematical optimization are useful in the field of machine learning. Unsupervised learning for exploratory data analysis is 

the main emphasis of data mining, a related field of study. Some machine learning programs use information and neural 

networks in a manner that is very similar to that of the human brain. When applied to commercial issues, machine learning 

is sometimes referred to as predictive analytics. 

 

7. EXTREMELY BOOSTED NEURAL NETWORK 

XGBoost is a prediction-making ensemble method that employs N trees in the following way: 

𝑁 

𝑦 = ѱ(𝑥) = ∑             𝑔𝑛(𝑥)                              (5) 
𝑛=1 

 
 
Feature inputs (x) and result sets (y) are denoted here. The value of the Nth leaf's score is denoted by gn(x). Additionally, 

gn(x) ∈M, where M is the collection of all possible ratings. Then, we apply regularization to prevent overfitting: 

L (ѱ)= ∑𝑖 𝑙(𝑦 𝜄, 𝑦𝑖) + ∑𝑛 𝛿(𝑔𝑛)                                 (6)                   
where L denotes the loss function, and δ(gn) is defined as: 

1 𝑇 
2 

𝛿(𝑔) = 𝛾𝑇 + 𝜆 ∑ 𝑤𝑖 
𝑖=1 

(7)

where the direction of regularization by λ and γ reduces overfitting. The letters T and w stand for the quantity of leaves and 

their relative masses. as seen in figure (2)

The extremely gradient boosted tree plays a crucial role in both our architecture and our training, and its feature importance 

is determined by information gain from the tree's features. This is accomplished by calculating the entropy of a set of feature 

vectors and then using this value to determine which attribute in the set is most useful for distinguishing between the classes 

to be learned. Before Li and Claramunt, there was Raileanu and Stoffel (2004). (2006). Every node's impurity level reflects 

how consistent the target variable is. Theoretically, we may define P to be a probability distribution that 

𝑃 = (𝑝1, 𝑝2, … . , 𝑝𝑛)                                            (8) 

where pi is the probability that some datapoint in D is part of some subset di In a nutshell, entropy means: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑃) = ∑𝑛   −𝑝𝑖 𝑙𝑜𝑔2(𝑝𝑖)                           (9) 

  

The information gain calculated is then used to determine the feature importance of the boosted tree which is used in  

2 
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Boosted Gradient Descent 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐺𝑎𝑖𝑛 = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑏𝑒𝑓𝑜𝑟𝑒𝑆𝑝𝑙𝑖𝑡 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝑎𝑓𝑡𝑒𝑟𝑆𝑝𝑙𝑖𝑡                                        (10) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2 Xbnet Architecture 

 

8. EVALUATION METRICS 

The confusion matrix of a two-class discriminator. Predicted values are labeled as either positive (1) or negative (0), whereas 

actual values are denoted as True (1) or False (0). The confusion matrix contains expressions such as TP, TN, FP, and FN 

that can be used to make estimates of the potential of classification models[28]. 

• When a good result is anticipated and what really occurs is the same, we call it a True Positive (TP) in the confusion matrix. 

When a positive event is anticipated but a negative outcome actually occurs, the corresponding data point in the confusion 

matrix is considered to be false positive (FP). It is called a Type 1 Error when this happens. That's a blessing, if you're 

looking at it through rosy glasses of hindsight. When a negative event is anticipated but a positive outcome actually occurs, 

the corresponding data point in the confusion matrix is a false negative. This is a classic example of a Type 2 Error, which 

is just as dire a circumstance as a Type 1 Error. When a negative consequence is expected and the actual outcome is the 

same, the data point in the confusion matrix is True Negative (TN). These are the outcomes of the binary categorization. 

the proportion of correct predictions (TP + TN) to all possible predictions (P + N) is the measure of accuracy. Accuracy 

ranges from a peak of 1.00 to a worst of 0.00. 

• Number of correct Positive Predictions (TP) discordant by the total number of positive (P) = True Positive Rate. "Recall," 

"Sensitivity," and "REC" are all synonyms. Maximum TP Rate is 1, minimum is 0. 

• The False Positive Rate (FP Rate) is determined by dividing the number of erroneous positive predictions (FP) by the total 

number of negatives (N). A false positive rate of 1.0 is the worst possible rate and 0.0 is the best. In addition, 1-specificity 

can be used to measure it. 

• Correct positive predictions (TP) are subtracted from the sum of all positive predictions (TP 

+ FP) to arrive at the precision. Accuracy ranges from a peak of 1.0 to a bad of 0.0. 

• The True Negative Rate (Specificity) is calculated by dividing the total number of accurate negative predictions (TN) by 

the total number of negatives (N). 

One way to evaluate a test's reliability is by looking at its F-measure or F-score. The formula used to determine this 

prioritizes accuracy and periodic reminders: 

 
                                2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

 
    𝐹 − 𝑆𝑐𝑜𝑟𝑒 = 

                                                                                (11) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙  

• Cohen's Kappa coefficient (k), a measure of the number of instances classified in a machine learning model that match                                                                                                                            

the data designated as the fundamental truth, controls the random classifier's accuracy as measured and anticipated 

accuracy.

The Random Accuracy has a precision of 1 / k. The number of categories in the dataset is denoted by k here. Since k = 2

in a situation of binary classification, the success rate is half as high.

K= 
𝒑𝟎−𝒑𝒆 

                                                                                                                                                                                                                                                          (12) 
(𝟏−𝒑𝒆) 



 

 

54 Hamad, Vol. (2024), 2024, pp 49–58 

 

9. PREVIOUS STUDIES 

In 2023, Noor AlRefaai. et al., They developed a model to classify the genes linked to type 1 diabetes using machine 

learning techniques. They used Naive Bayes (NB), support vector machines (SVM), and random forests (RF) to classify 

the genes linked to the disease in a T1D gene expression dataset with multiple classes. The model can effectively identify 

the T1D-related genes, which is very helpful in identifying a person who has the condition before any symptoms manifest. 

When using SVM with chi2 as the feature selection approach, the greatest accuracy of 89.1% was attained [19]. 

In 2023, Hadeel Alzoubi. et al., Develop a deep learning framework to use genetic variants to forecast the likelihood of 

developing complicated illnesses. A multilayer perceptron (MLP) is used in the proposed framework to predict people's state 

of illness. The recommended methodology was applied to the datasets from the 1958 British Birth Cohort (58C), the UK 

National Blood Service (NBS) Control Group, and the Welcome Trust Case-Control Consortium (WTCCC). The area 

under the curve (AUC) for the performance was 0.94 or higher [20]. 

In 2022, TaehoJo. et al., Create a deep learning-based system to identify genetic variations and apply it to the categorization 

of Alzheimer's disease. Propose a novel three-step approach (SWAT-CNN) for the identification of genetic variants utilizing 

deep learning to identify phenotype-related single nucleotide polymorphisms (SNPs) that may be utilized to develop precise 

disease classification models. First, the entire genome was split into optimally sized, nonoverlapping fragments. Next, 

convolutional neural networks (CNNs) were applied to each fragment to identify those that were related with certain 

phenotypes. The second phase involved running CNN on the chosen fragments using a Sliding Window Association Test 

(SWAT) to determine phenotypic influence scores (PIS) and discover phenotype-associated SNPs based on PIS. The final 

stage involved running CNN on all discovered SNPs in order to create a categorization model. GWAS data from the 

Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to evaluate a strategy, with N = 981, cognitively normal 

older people (CN) = 650, and AD = 331. method found that the most important genetic locus for AD is the well-known 

APOE region. Using a classification model, an area under the curve (AUC) of 0.82 was obtained [21]. 

In 2022, Emma Qumsiyeh. et al., Create a GediNET utilizing a knowledge-based machine learning technique to find gene 

connections across illnesses. created a revolutionary method called GediNET that applies past biological knowledge to gene 

Groups that have been linked to a particular illness, like cancer. The unique aspect of GediNET is that it afterwards makes 

it possible to identify meaningful connections between that particular disease and other diseases. The identification of gene 

Groups is the first stage in this approach. The Groups are then put through a scoring component to see which categorization 

Groups are doing the best. A machine learning model is then trained using the top-ranked gene groups. GediNET uses the 

Grouping, Scoring, and Modelling (G-S M) method to find more illnesses that share this signature in a comparable way. 

GediNET uses machine learning that is based on Disease- Disease Association (DDA) to find these connections. With an 

average of 21.61 genes, the AUC is 97% [22]. 

In 2021, Monika Sethi. et al., Design a Gaussian-Based Bayesian Parameter Optimized Deep Convolutional LSTM 

Network Classification of Alzheimer's Disease. In order to build the best deep learning model to predict the early onset of 

AD binary and ternary classification on MRI images, four different 2D and 3D convolutional neural network (CNN) 

frameworks are recommended. In addition, a few hyperparameters must be specified and changed to improve the deep 

learning model's performance, including learning rate, optimizers, and hidden units. Through the course of the studies, 

Bayesian optimization lets to utilize advantage: In addition to the findings, a persistent hyperparameter space test also 

provides information on the most likely outcomes. The number of experiments required to investigate space can be 

significantly decreased in this approach. Last but not least, long short-term memory (LSTM) through the process of 

augmentation has resulted in finding the better settings of the model that too in fewer iterations with a relative improvement 

(RI) of 7.03%, 12.19%, 10.80%, and 11.99% over the four systems optimized with manual hyperparameters tuning such 

that hyperparameters that look more appetizing from previous data as well as the traditional techniques of manual selection. 

With AD vs. MCI (S2) participants in the training and testing sets, the baseline model's accuracy is reported to be 82.65%. 

[23]. 

In 2021, Jiande Wu. et al., Create a machine learning-based classification of breast cancer types. to choose the features 

(genes) utilized in the construction and validation of the classification models, RNA-Sequence data from 110 triple negative 

and 992 non-triple negative breast cancer tumor samples from The Cancer Genome Atlas were analyzed. Support Vector 

Machines, K-nearest Neighbor, Naive Bayes, and Decision Tree were four distinct classification models that were assessed 

utilizing characteristics picked at varying threshold levels to train the models for categorizing the two forms of breast 

cancer. With an accuracy of 90%, a recall of 87%, and a specificty of 90%, SVM outperformed the other three classification 

algorithms that were tested. KNN came in second with an accuracy of 87%, a recall of 76, and a specificty of 88%. NGB 

and DT performed poorly on recall while being relatively accurate. The numerous characteristics employed and the 

imbalanced research design can help to partially explain the heterogeneity in the assessment parameters [24]. 

In 2021, Ardina Ariani. et al., Utilizing genetically modified knn and an artificial bee colony algorithm, classify kidney 

diseases. employs genetically modified K-Nearest Neighbor (KNN) and the Artificial Bee Colony (ABC) algorithm to 

construct a classification system for renal diseases. In order to pick the features that will best influence renal illness, the 

ABC algorithm is utilized. Genetically modified KNN is then used to classify the features. The three stages of study are pre-
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processing, feature selection, and classification. However, it focuses on the 400 records with 24 attributes that were utilized 

in the pre-processing stage of chronic renal illness to pick features and classify patients. Information about kidney disease is 

divided into two categories: chronic kidney disease and non-chronic kidney disease. The outcome revealed that by splitting 

the dataset into 280 training and 120 test data, an accuracy of 98% was attained [25]. 

In 2019, Yaron Gurovich. et al., Create a system for employing deep learning to identify the face characteristics of 

hereditary diseases. provide a system for analyzing face images called Deep Gestalt that measures resemblances to a large 

number of syndromes using computer vision and deep learning methods. In three first studies, two with the aim of 

identifying people with a specific condition from other syndromes and one with the purpose of separating several genetic 

subtypes in Noonan syndrome, Deep Gestalt outperformed physicians. Deep Gestalt identified the right diagnosis on 502 

distinct photos with top-10 accuracy in the final testing, which reflected a genuine clinical setting problem.  

A community-driven phenotyping platform collected a dataset of more than 17,000 photos spanning more than200 

syndromes, which was used to train the model. Clinical genetics, genetic testing, research, and precision medicine might 

all benefit significantly from the potential benefits of Deep Gestalt [26]. 

In 2018, Muhammad Asif. et al., Create a system for finding disease-related genes by comparing comparable genes 

functionally using the Gene Ontology. created a method for supervised machine learning to predict the genes of complex 

diseases. Candidate genes for the autism spectrum disorder (ASD) were used to evaluate the proposed pipeline. By using 

several semantic similarity metrics, a quantitative measure of gene functional similarity was discovered. Different kinds of 

machine learning classifiers were developed based on quantitative semantic similarity matrices of ASD and non-ASD genes 

in order to identify the underlying functional similarities between ASD genes. The classifiers improved upon previously 

reported ASD classifiers were trained and evaluated on ASD and non-ASD gene functional similarity. A Random Forest 

(RF) classifier outperformed the previously reported classifier (0.73) in its ability to detect novel ASD genes, with an AUC 

of 0.80. This classifier was also able to identify 73 unique ASD candidate genes that were enriched for fundamental ASD 

traits including obsessive-compulsive disorder and autism. Attention deficit hyperactivity disorder (ADHD) and other co-

occurring illnesses with ASD were also elevated in predicted genes. Additionally, the suggested technique was used to 

create a KNIME workflow that users can customize and utilize without having to have programming or machine learning 

expertise [27]. 

TABLE I SUMMARY PREVIOUS STUDIES 

No. Name of Authors Year Methods Dataset Result 

1 
Noor AlRefaai. et 
al.,[29] 

2023 

Machine learning 
approaches by applying    

machine learning  

(ML) approaches for 
classification, such as 

Naive Bayes (NB), 
support vector machines 

(SVM), and random 

forests (RF). 

T1D gene expression 
dataset includes 

multiclass 
classification of the 

genes linked to this 

condition 

Accuracy of 89.1% as 

obtained 

2 
Hadeel Alzoubi. et 

al.,[30] 
2023 

employs a multilayer 

perceptron (MLP) 

applied to the 1958 
British Birth Cohort 

(58C) dataset, the UK 

National Blood 
Service (NBS) 

Control Group, and 

the Wellcome Trust 
Case-Control 

Consortium 

(WTCCC) dataset. 

The performance had 
an area under the 

curve (AUC) of 0.94 

or higher. 

3 TaehoJo. et al.,[31] 2022 

Deep learning's (SWAT-

CNN) three- step method 
for identifying genomic 

variations 

GWAS data from the 

Alzheimer's Disease 

Neuroimaging 
Initiative (ADNI) 

were used, with 

(N= 981; CN =650; 
AD= 331) and 

cognitively normal 

older individuals 
(CN) as well as AD 

as the dependent 

variables. 

Using a classification 

model, an area under 
the curve (AUC) of 

0.82 was obtained. 

4 
Emma Qumsiyeh. et 
al.,[32] 

2022 

Use GediNET, which 

combines previous 

scientific information with 
gene groups that have 

been linked to a particular 

illness, such as cancer. 

10 human gene 
expression datasets 

from the GEO 

database 
 for 

With an average   

of 
21.61 genes, the 

AUC is 97%. 
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10. CONCLUSION: 

The studies reviewed in this paper underscore the effectiveness of machine learning and text mining in genetic disease 

prediction. From the use of deep learning to identify phenotypic patterns to the application of text mining for feature 

extraction from medical texts, the research community has made significant strides. The ongoing evolution of computational 

technologies promises even greater advances, potentially leading to more personalized and accurate medical interventions 

for genetic disorders. This paper not only highlights the current state of research but also sets the stage for future 

developments in the field. 
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