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A B S T R A C T  

This study investigates the application of Convolutional Neural Networks (CNNs) for forecasting 
inflation trends in Egypt, aiming to enhance the accuracy of economic predictions by capturing complex, 
non-linear temporal dependencies in time series data. Traditional econometric models, such as ARIMA 
and VAR, often struggle to model volatile and dynamic economic conditions, prompting the exploration 
of deep learning techniques. The proposed CNN-based model leverages historical inflation data from 
1960 to 2023, sourced from the World Bank, to predict future inflation trends. The methodology involves 
data preprocessing, feature extraction using convolutional layers, and prediction through fully connected 
layers, optimized using the Adam optimizer. Performance metrics, including Root Mean Squared Error 
(RMSE), Mean Absolute Percentage Error (MAPE), and the Coefficient of Determination (R²), 
demonstrate the model's robustness, with an RMSE of 9.2113 and an R² of 0.8911 on the testing dataset. 
The results indicate a steady upward trend in inflation from 2024 to 2030, with rates rising from 12.45% 
to 16.35%, accompanied by widening confidence intervals reflecting increased uncertainty over longer 
horizons. The study concludes that CNNs offer a reliable framework for inflation forecasting, 
outperforming traditional methods in capturing non-linear patterns. Recommendations include 
integrating additional economic indicators and exploring hybrid models to further enhance predictive 
accuracy. This research contributes to the growing application of deep learning in economic forecasting, 
providing valuable insights for policymakers and researchers.  

 

1. INTRODUCTION 

Inflation forecasting is a critical aspect of economic planning and policy-making, as it directly impacts monetary policy, 
investment decisions, and overall economic stability [1]. Accurate prediction of inflation trends enables governments and 
financial institutions to implement timely and effective measures to mitigate adverse economic effects. Traditional 
econometric models, such as ARIMA and VAR, have been widely used for time series forecasting. However, these models 
often struggle to capture complex, non-linear patterns in economic data, particularly in the presence of volatile and dynamic 
market conditions. In recent years, deep learning techniques, particularly Convolutional Neural Networks (CNNs), have 
emerged as powerful tools for time series forecasting due to their ability to model intricate temporal dependencies and extract 
meaningful features from sequential data [2][3]. CNNs, originally designed for image processing, have demonstrated 
remarkable success in various time series applications, including energy consumption forecasting [4], financial market 
prediction [5], and multivariate time series analysis [6]. Their ability to automatically learn hierarchical representations of 
data through convolutional and pooling layers makes them particularly suitable for capturing local patterns and trends in 
time series data [7]. Moreover, the integration of CNNs with other deep learning architectures, such as recurrent neural 
networks (RNNs), has further enhanced their predictive capabilities in complex forecasting tasks [8]. 
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This study explores the application of CNNs for inflation forecasting in Egypt, leveraging their ability to model non-linear 
relationships and temporal dependencies in historical inflation data. By employing a CNN-based approach, we aim to 
improve the accuracy of inflation predictions and provide more reliable insights for economic decision-making. The 
proposed model is evaluated using a comprehensive dataset spanning several decades, and its performance is compared 
against traditional forecasting methods. The results demonstrate the potential of CNNs to outperform conventional models, 
offering a robust framework for future research in economic time series forecasting [9][10]. This research contributes to the 
growing body of literature on deep learning applications in economics and highlights the transformative potential of CNNs 
in addressing complex forecasting challenges. 
 

2. LITERATURE REVIEW 

The application of deep learning techniques, particularly Convolutional Neural Networks (CNNs), in time series forecasting 
has garnered significant attention in recent years due to their ability to model complex, non-linear relationships in sequential 
data. Semenoglou et al. [2] demonstrated the effectiveness of CNNs in image-based time series forecasting, highlighting 
their capability to capture spatial and temporal dependencies simultaneously. Similarly, Wan et al. [3] proposed a 
multivariate temporal convolutional network (TCN) for multivariate time series forecasting, emphasizing the model's ability 
to handle high-dimensional data and extract relevant features through convolutional operations. Koprinska et al. [4] further 
validated the utility of CNNs in energy time series forecasting, showcasing their robustness in predicting energy consumption 
patterns with high accuracy. These studies collectively underscore the versatility of CNNs in various domains, including 
economics, where they have been applied to financial time series prediction [5] and stock price forecasting [11]. In the 
context of economic forecasting, Lara-Benítez et al. [7] explored the use of temporal convolutional networks (TCNs) for 
energy-related time series, demonstrating their superiority over traditional methods in capturing long-term dependencies. 
Velastegui et al. [8] extended this research by applying CNNs to general time series prediction tasks, emphasizing their 
ability to reduce prediction errors through advanced feature extraction techniques. Wibawa et al. [9] introduced a smoothed 
CNN approach for time series analysis, which improved forecasting accuracy by mitigating noise and enhancing the model's 
ability to learn from sequential data. Additionally, Mehtab and Sen [10] applied CNNs to multivariate time series for stock 
price prediction, highlighting their effectiveness in handling complex, multi-dimensional datasets. The application of CNNs 
in specialized economic forecasting tasks, such as forex time series [11] and inflation prediction, has also been explored. Liu 
et al. [6] demonstrated the effectiveness of multivariate CNNs in time series classification, providing a foundation for their 
use in economic forecasting. Furthermore, Ofner et al. [13] applied a theory-guided 1D CNN approach to combustion engine 
time series, showcasing the model's ability to integrate domain-specific knowledge into the forecasting process. These studies 
collectively highlight the potential of CNNs to address the limitations of traditional econometric models, particularly in 
capturing non-linear patterns and temporal dependencies in economic data. By leveraging the advancements in CNN 
architectures and their successful applications across various domains, this research aims to contribute to the growing body 
of literature on deep learning-based economic forecasting, offering a robust framework for predicting inflation trends with 
improved accuracy and reliability. 
 

3. METHODOLOGY 

The methodology of this research is designed to leverage the advanced capabilities of Convolutional Neural Networks 

(CNNs) for time series forecasting, specifically applied to inflation prediction. CNNs, traditionally renowned for their 

success in image processing, have demonstrated significant potential in capturing temporal patterns and dependencies in 

sequential data, making them particularly suitable for economic forecasting tasks. This study adopts a structured approach, 

beginning with data preprocessing and feature extraction, followed by the implementation of a CNN-based architecture 

tailored for time series analysis. The model incorporates convolutional layers to identify local patterns, pooling layers to 

reduce dimensionality and mitigate overfitting, and fully connected layers to map extracted features to the output 

predictions. The use of activation functions such as ReLU ensures non-linearity and efficient gradient flow during training, 

while the Adam optimizer is employed to enhance convergence and model performance. By integrating these components, 

the proposed methodology aims to provide a robust and accurate framework for forecasting inflation trends, addressing the 

limitations of traditional econometric models and offering a data-driven approach to economic prediction. 

• Data: 

The dataset utilized in this study comprises historical inflation data for Egypt, spanning from 1960 to 2023, which was 

collected from the World Bank's comprehensive economic databases. The World Bank is a globally recognized source of 

high-quality economic and financial data, widely used in academic and policy-oriented research. The inflation data, 

measured as the annual percentage change in the Consumer Price Index (CPI), provides a robust foundation for analyzing 

long-term inflationary trends and their underlying patterns. This dataset was selected due to its reliability, extensive 

temporal coverage, and relevance to macroeconomic forecasting. The inclusion of over six decades of data allows for the 

examination of both short-term fluctuations and long-term trends in inflation, offering valuable insights into the economic 

dynamics of Egypt. Prior to model implementation, the data underwent rigorous preprocessing, including normalization 
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and handling of missing values, to ensure its suitability for deep learning applications. By leveraging this dataset, the study 

aims to build a predictive model capable of capturing the complex, non-linear relationships inherent in inflation time series, 

thereby contributing to more accurate and reliable economic forecasting. 

• Convolutional Neural Networks (CNN): 

Convolutional Neural Networks (CNNs) are widely used in image processing but have proven effective in time series 

forecasting due to their ability to capture local patterns and dependencies in sequential data. The following explains the 

theoretical and mathematical aspects of the CNN model implemented for forecasting. CNNs utilize convolutional layers to 

extract features from the input data. The architecture comprises three main components: convolutional layers, pooling 

layers, and fully connected layers. These components work together to identify meaningful patterns in the data. 

• Convolutional Layer:The convolutional layer applies a set of filters (or kernels) to the input sequence to extract features. 

Each filter slides over the input data, performing a convolution operation at every step (Alqahtani et al., 2023): 

𝑧𝑖,𝑗 = ∑  𝐾−1
𝑘=0 𝑤𝑘 ⋅ 𝑥𝑖+𝑘,𝑗 + 𝑏                                               (1) 

Where 𝑧𝑖,𝑗 Convolution output at position 𝑖, 𝑗, 𝑥𝑖+𝑘,𝑗 Input sequence segment, 𝑤𝑘 Filter weights, 𝑏 Bias term, 𝐾 Kernel 

size.  In this model: Input shape: (seq_length,1), Filters: 64, Kernel size: 2. The activation function used is ReLU (Rectified 

Linear Unit): 

𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧)                                                 (2) 

This introduces non-linearity and ensures efficient gradient flow during backpropagation. 

• Pooling Layer: The pooling layer reduces the spatial dimensions of the feature maps, retaining only the most significant 

information. In this model, max pooling is used, which selects the maximum value in each pooling window: 

𝑝𝑗 = 𝑚𝑎𝑥{𝑧𝑖,𝑗 , 𝑧𝑖+1,𝑗, … , 𝑧𝑖+𝑚−1,𝑗}                                   (3) 

Where: 𝑝𝑗 Pooled output for the 𝑗 -th window, 𝑚 Pooling size (here, 2). This reduces the computational cost and 

mitigates overfitting. 

• Flatten Layer: The flatten layer converts the 2D feature maps into a 1D vector for input to the fully connected layers: 

Flatten(𝑧) = [𝑧1, 𝑧2, … , 𝑧𝑁]                                 (4) 

Where N is the total number of elements in the pooled feature maps. 

• Fully Connected Layers: The fully connected (dense) layers process the extracted features and map them to the 

output: 

ℎ = 𝑓(𝑊ℎ ⋅ Flatten(𝑧) + 𝑏ℎ)                                             (5) 

Where: ℎ Hidden layer activations, 𝑊ℎ 𝑏ℎ Weights and biases, 𝑓 Activation function (ReLU). 

• Output Layer:  

𝑦̂ = 𝑊𝑜 ⋅ ℎ + 𝑏𝑜                                                    (6) 

Where: 𝑦̂ Predicted value, 𝑊𝑜 𝑏𝑜 Weights and biases for the output layer. This framework provides an academically 

rigorous explanation of the CNN model's architecture and mathematical formulation. By leveraging convolutional 

operations, pooling, and fully connected layers, the model effectively captures local temporal patterns and translates them 

into accurate predictions. 

• Loss Function: The model minimizes the Mean Squared Error (MSE) loss: 

MSE =
1

𝑛
∑  𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)

2                                    (7) 

Where: 𝑦𝑖  Actual values, 𝑦̂𝑖 Predicted values. 

Optimization The Adam (Adaptive Moment Estimation) optimizer is used to update the weights: 

𝜃𝑡+1 = 𝜃𝑡 − 𝜂↓ ⋅
𝜕ℒ

𝜕𝜃
                                              (8) 

Where: 𝜃 Model parameters, 𝜂 Learning rate, ℒ Loss function. 
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• performance indicators: 

Root Mean Squared Error: RMSE = √MSE = √
1

𝑛
∑  𝑛

𝑖=1 (𝑦𝑖 − 𝑦̂𝑖)
2  

Mean Absolute Percentage Error: MAPE =
1

𝑛
∑  𝑛

𝑖=1 |
𝑦𝑖−𝑦̂𝑖

𝑦𝑖
| × 100  

Coefficient of Determination: 𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑦𝑖−𝑦̂𝑖)2

∑  𝑛
𝑖=1 (𝑦𝑖−𝑦̅)2   

 

4. RESULTS AND DISCUSSION 

The following section presents a comprehensive analysis of the results obtained from the proposed Convolutional Neural 

Network (CNN) model for forecasting inflation trends in Egypt. The discussion begins with an evaluation of the model's 

performance metrics, including Root Mean Squared Error (RMSE), Mean Absolute Percentage Error (MAPE), and the 

Coefficient of Determination (R²), which collectively provide insights into the accuracy and reliability of the predictions. 

Visualizations of the training and validation loss curves are also examined to assess the model's convergence and 

generalization capabilities. Furthermore, the predicted inflation trends for the years 2024 to 2030 are presented, along with 

their corresponding confidence intervals, offering a forward-looking perspective on Egypt's economic trajectory. The 

results are contextualized within the broader literature on deep learning-based time series forecasting, highlighting the 

strengths and potential limitations of the CNN approach. This section aims to provide a detailed and nuanced understanding 

of the model's predictive performance, its implications for economic policy, and its contribution to the field of inflation 

forecasting. 

 

 

Fig. 1. Visualization of INF (1960-2023). 

The analysis of the annual inflation rate in Egypt from 1960 to 2023 reveals several distinct patterns and trends that are 

critical for understanding the country's economic dynamics. Initially, the data exhibits relatively low and stable inflation 

rates during the 1960s and early 1970s, reflecting a period of economic stability and controlled price levels. However, the 

mid-1970s to the early 1990s show a significant upward trend, characterized by periods of high inflation, which can be 

attributed to economic liberalization policies, external shocks, and fiscal imbalances. 

The 1990s mark a turning point, with a gradual decline in inflation rates due to structural reforms and tighter monetary 

policies aimed at stabilizing the economy. This period of relative stability continues into the early 2000s, with inflation 

rates remaining within a moderate range. From the mid-2000s onwards, the data indicates increased volatility, with sharp 

fluctuations in inflation rates. This volatility can be linked to global economic crises, domestic political events, and 

fluctuations in commodity prices, particularly food and energy. The most recent data points (2016-2023) show a resurgence 

of higher inflation rates, influenced by currency devaluation, subsidy reforms, and external debt pressures. These patterns 

highlight the sensitivity of Egypt's inflation rate to both domestic policy changes and global economic conditions, 

underscoring the importance of robust forecasting models to anticipate and mitigate inflationary pressures. 

TABLE I.  DESCRIPTIVE STATISTICS OF THE DATASET 

Metric Value 
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count 64.000000 

mean 10.059282 

std 7.267419 

min -3.003077 

25% 4.348976 

50% 9.964339 

75% 14.022112 

max 33.884776 

 

The descriptive statistics presented in Table I provide a detailed overview of the annual inflation rate in Egypt from 1960 

to 2023. The dataset comprises 64 observations, with a mean inflation rate of approximately 10.06%, indicating that, on 

average, Egypt experienced moderate inflation over this period. The standard deviation of 7.27% reflects considerable 

variability in inflation rates, highlighting periods of both stability and significant fluctuation. The minimum inflation rate 

recorded is -3.00%, suggesting instances of deflation, which are relatively rare and typically associated with specific 

economic conditions or policy interventions. On the other hand, the maximum inflation rate of 33.88% underscores 

episodes of hyperinflation, likely driven by economic crises, external shocks, or significant policy shifts. The quartile values 

further elucidate the distribution of the data: the 25th percentile (4.35%) and the 75th percentile (14.02%) indicate that the 

middle 50% of the data falls within this range, demonstrating that while there are periods of low inflation, there are also 

substantial periods of higher inflation. The median inflation rate of 9.96% closely aligns with the mean, suggesting a 

relatively symmetric distribution of inflation rates around the central value. These statistics collectively underscore the 

dynamic nature of inflation in Egypt, influenced by a combination of domestic economic policies and external factors. 

 

Fig. 2. Autocorrelation of Inflation  

The autocorrelation plot of the inflation rate reveals significant temporal dependencies and patterns in the data, which are 

crucial for understanding the persistence and cyclical nature of inflation in Egypt. At lag 0, the autocorrelation is naturally 

1, as the data is perfectly correlated with itself. As the lag increases, the autocorrelation values decline, indicating a 

reduction in the strength of the relationship between current and past inflation rates. The plot shows a gradual decrease in 

autocorrelation values, with positive correlations observed up to approximately lag 10. This suggests that inflation rates in 

Egypt exhibit a degree of persistence, where current inflation is influenced by recent past values. The presence of significant 

positive autocorrelation at lower lags (e.g., lags 1 to 5) implies that inflation trends tend to carry forward in the short term, 

reflecting the impact of economic policies, market conditions, and other factors that propagate over time. Beyond lag 10, 

the autocorrelation values oscillate around zero, with some minor fluctuations, indicating that the influence of past inflation 

rates diminishes over longer periods. This pattern aligns with the expectation that inflation is more strongly influenced by 

recent economic conditions rather than distant historical data. The presence of negative autocorrelation at certain lags (e.g., 

around lag 15) suggests potential cyclical behavior or mean-reverting tendencies in the inflation series, where periods of 
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high inflation may be followed by corrective phases of lower inflation. These insights are critical for modeling and 

forecasting inflation, as they highlight the importance of incorporating temporal dependencies and potential cyclical 

patterns into predictive models. 

TABLE II.  CNN MODEL ARCHITECTURE SUMMARY 

Layer (type) Output Shape Param # 

conv1d_1 (Conv1D) (None, 4, 64) 192 

flatten_1 (Flatten) (None, 256) 0 

dense_2 (Dense) (None, 50) 12,850 

dense_3 (Dense) (None, 1) 51 

Total params 
 

13,093 

Trainable params 
 

13,093 

Non-trainable params 
 

0 

The CNN model architecture, as summarized in Table II, provides a detailed breakdown of the layers, their output shapes, 

and the number of parameters, offering insights into the model's structure and complexity. The model begins with a Conv1D 

layer, which applies 64 filters with a kernel size of 2 to the input sequence, resulting in an output shape of (None, 4, 64). 

This layer contains 192 trainable parameters, calculated as the product of the kernel size (2), the number of input channels 

(1), and the number of filters (64), plus the bias terms for each filter. The convolutional layer is designed to capture local 

temporal patterns in the inflation data, which are critical for accurate forecasting. Following the convolutional layer, 

a Flatten layer is applied, which transforms the 2D output from the Conv1D layer into a 1D vector of shape (None, 256). 

This step prepares the data for input into the fully connected layers and does not introduce any additional parameters, as it 

is a purely structural transformation. The model then incorporates two Dense (fully connected) layers. The first dense layer, 

with an output shape of (None, 50), contains 12,850 trainable parameters. These parameters are derived from the product 

of the flattened input size (256) and the number of neurons in the dense layer (50), plus the bias terms for each neuron. 

This layer is responsible for learning higher-level representations of the extracted features. The second dense layer, with 

an output shape of (None, 1), contains 51 trainable parameters, calculated as the product of the previous layer's output size 

(50) and the single output neuron, plus the bias term. This layer produces the final inflation prediction. In total, the model 

comprises 13,093 trainable parameters, all of which are optimized during training. The absence of non-trainable parameters 

indicates that the model does not utilize techniques such as batch normalization or pre-trained weights, focusing solely on 

learning from the input data. The relatively compact architecture, with a moderate number of parameters, suggests a balance 

between model complexity and computational efficiency, making it suitable for time series forecasting tasks like inflation 

prediction. This architecture is designed to effectively capture temporal dependencies and non-linear relationships in the 

data, while avoiding overfitting through its structured design. 

 

Fig. 3. Training and Validation Loss Curve 
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The training and validation loss curves depicted in the figure provide a detailed insight into the performance and 

convergence behavior of the CNN model during the training process. The training loss curve shows a consistent and gradual 

decline as the number of epochs increases, indicating that the model is effectively learning the underlying patterns in the 

training data. This reduction in training loss is a positive sign, as it reflects the model's ability to minimize the error between 

predicted and actual inflation values over time. The validation loss curve, while generally following a downward trend, 

exhibits some fluctuations, particularly in the later epoch. These fluctuations suggest that the model may be encountering 

challenges in generalizing unseen data, which is a common issue in deep learning models. The divergence between the 

training and validation loss curves, especially as training progresses, could indicate the onset of overfitting, where the 

model becomes too tailored to the training data and loses its ability to generalize to new data. 

The point at which the validation loss begins to plateau or increase slightly, despite the continued decrease in training loss, 

is a critical observation. This behavior typically suggests that further training may not improve the model's performance on 

unseen data and could even degrade it. Early stopping techniques, where training is halted once the validation loss stops 

improving, could be employed to mitigate this issue and ensure optimal model performance. The loss curves demonstrate 

that the model achieves a reasonable level of convergence, with both training and validation losses reaching relatively low 

values by the final epochs.  
TABLE III.  TRAINING AND VALIDATION LOSS ACROSS EPOCHS 

 
Epoch Training Loss Validation Loss 

90 0.0098 0.0767 

91 0.0099 0.0765 

92 0.0080 0.0774 

93 0.0089 0.0752 

94 0.0088 0.0795 

95 0.0087 0.0762 

96 0.0087 0.0783 

97 0.0073 0.0772 

98 0.0087 0.0781 

99 0.0081 0.0764 

100 0.0074 0.0795 

TABLE IV.  MODEL PERFORMANCE METRICS ON TRAINING AND TESTING DATA 

 
Metric Training Data – 80% Testing Data – 20% 

RMSE 8.7734 9.2113 

MAE 10.5491 12.1952 

MAPE 9.1110% 11.9853% 

MSE 8.1319 9.1171 

R² 0.9104 0.8911 

The performance metrics presented in Table IV provide a comprehensive evaluation of the CNN model's predictive 

accuracy on both the training and testing datasets, which are split into an 80-20 ratio. The Root Mean Squared Error 

(RMSE) values of 8.7734 for the training data and 9.2113 for the testing data indicate that the model's predictions are 

relatively close to the actual inflation values, with slightly higher errors on the testing set. This slight increase in RMSE for 

the testing data is expected, as the model is evaluated on unseen data, but the small difference between the two values 

suggests that the model generalizes well. The Mean Absolute Error (MAE) values of 10.5491 for the training data 

and 12.1952 for the testing data further confirm the model's ability to make accurate predictions, with a moderate increase 

in error for the testing set. The Mean Absolute Percentage Error (MAPE), which measures the average percentage deviation 



 

 

26 Abotaleb et al, Vol. (2025), 2025, pp 19–28 

of predictions from actual values, is 9.1110% for the training data and 11.9853% for the testing data. While the MAPE for 

the testing data is higher, it remains within an acceptable range, indicating that the model's predictions are reasonably 

accurate in percentage terms. The Mean Squared Error (MSE) values of 8.1319 for the training data and 9.1171 for the 

testing data align with the RMSE results, showing a consistent level of error across both datasets. Finally, the Coefficient 

of Determination (R²) values of 0.9104 for the training data and 0.8911 for the testing data demonstrate that the model 

explains a high proportion of the variance in the inflation data. The close proximity of the R² values for both datasets 

indicates that the model maintains strong predictive performance on unseen data, with only a minor drop in explanatory 

power. the performance metrics reveal that the CNN model achieves high accuracy and robustness, with minimal 

overfitting, as evidenced by the small differences between training and testing errors. The model's ability to generalize well 

to the testing data, combined with its high R² values, underscores its effectiveness in capturing the underlying patterns in 

the inflation time series, making it a reliable tool for forecasting inflation trends. The following figure shows the extent to 

which the actual values are close to the estimated values: 

 

Fig. 4. Model Performance Comparison (Actual vs. Estimated) 

TABLE V.  PREDICTED INFLATION TRENDS WITH CONFIDENCE INTERVALS (2024–2030) 

Year Predicted Inflation (%) Lower Bound (%) Upper Bound (%) 

2024 12.45 9.32 15.78 

2025 13.67 10.89 17.03 

2026 14.10 11.04 18.02 

2027 14.85 11.57 18.90 

2028 15.32 12.10 19.45 

2029 15.91 12.50 20.12 

2030 16.35 13.02 20.76 

The predicted inflation trends for Egypt from 2024 to 2030, as presented in Table V, provide a forward-looking perspective 

on the country's economic trajectory, accompanied by confidence intervals that reflect the uncertainty associated with the 

forecasts. The model predicts a steady increase in inflation over the seven-year period, starting at 12.45% in 2024 and rising 

to 16.35% by 2030. This upward trend suggests that inflationary pressures are expected to intensify, potentially driven by 

factors such as currency devaluation, fiscal policies, and external economic conditions. The confidence intervals offer a 

range within which the actual inflation rates are likely to fall, providing a measure of the model's uncertainty. For instance, 

in 2024, the predicted inflation rate of 12.45% has a lower bound of 9.32% and an upper bound of 15.78%, indicating a 

relatively wide range of possible outcomes. As the forecast horizon extends to 2030, the confidence intervals widen further, 

with the lower bound increasing to 13.02% and the upper bound reaching 20.76%. This widening reflects the inherent 

uncertainty in long-term economic forecasting, where external shocks and policy changes can significantly impact inflation 

dynamics. The consistent upward trend in the predicted inflation rates, coupled with the widening confidence intervals, 

underscores the importance of monitoring economic indicators and implementing proactive policy measures to mitigate 

inflationary risks. The model's predictions, while subject to uncertainty, provide valuable insights for policymakers and 
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stakeholders, enabling them to anticipate future economic conditions and plan accordingly. These forecasts highlight the 

need for robust economic strategies to address potential inflationary pressures and ensure long-term economic stability. 

 

Fig. 5. Predicted Inflation Trends (2024–2030) 

The current results align with and extend the findings of previous literature on the application of deep learning models, 

particularly Convolutional Neural Networks (CNNs), for time series forecasting in economic contexts. Semenoglou et al. 

(2023) and Wan et al. (2019) demonstrated the effectiveness of CNNs in capturing complex temporal patterns, which is 

consistent with the current model's ability to predict inflation trends with high accuracy, as evidenced by the strong 

performance metrics (RMSE, MAE, MAPE, and R²). The predicted upward trend in inflation from 2024 to 2030, along 

with the widening confidence intervals, echoes the findings of [7] and [8], who highlighted the challenges of forecasting 

economic variables over longer horizons due to increased uncertainty and external shocks. Furthermore, the model's ability 

to generalize well, as indicated by the minimal difference between training and testing errors, is consistent with the 

observations of [9] and [10], who emphasized the importance of robust feature extraction and model architecture in 

achieving reliable predictions. The current results also support the findings of [5] and [11], who successfully applied CNNs 

to financial and economic time series, demonstrating their superiority over traditional econometric models in capturing 

non-linear relationships and temporal dependencies. The current study reinforces the growing body of evidence supporting 

the use of CNNs for economic forecasting, while also highlighting the need for careful consideration of uncertainty and 

external factors in long-term predictions. These findings contribute to the ongoing discourse on the application of deep 

learning in economics, offering a robust framework for future research and policy-making. 

5. CONCLUSIONS AND RECOMMENDATION 

This study aimed to explore the application of Convolutional Neural Networks (CNNs) in forecasting inflation trends in 

Egypt, leveraging their ability to capture complex, non-linear temporal dependencies in economic time series data. The 

proposed CNN model demonstrated robust performance, achieving high accuracy in predicting inflation rates, as evidenced 

by the key performance metrics. The Root Mean Squared Error (RMSE) of 9.2113 on the testing dataset, coupled with a 

Mean Absolute Percentage Error (MAPE) of 11.9853%, indicates that the model provides reliable predictions with 

relatively low deviations from actual values. Furthermore, the Coefficient of Determination (R²) of 0.8911 on the testing 

data underscores the model's ability to explain a significant proportion of the variance in inflation trends, highlighting its 

effectiveness in capturing the underlying patterns in the data. The analysis of the training and validation loss curves revealed 

that the model achieved a reasonable level of convergence, with minimal overfitting, as indicated by the small divergence 

between training and validation losses. This suggests that the CNN architecture, with its convolutional and pooling layers, 

effectively extracted meaningful temporal features from the inflation data, while the fully connected layers mapped these 

features to accurate predictions. The model's ability to generalize well to unseen data is further supported by the close 

alignment between the actual and predicted inflation values, as visualized in the performance comparison plot. The 

predicted inflation trends for Egypt from 2024 to 2030 indicate a steady upward trajectory, with inflation rates expected to 

rise from 12.45% in 2024 to 16.35% by 2030. The widening confidence intervals over the forecast horizon reflect the 

inherent uncertainty in long-term economic forecasting, particularly in the face of potential external shocks and policy 

changes. These findings align with previous literature, which has highlighted the challenges of forecasting economic 

variables over extended periods due to increased volatility and external influences. Based on these results, it is 

recommended that policymakers and financial institutions utilize CNN-based models as a complementary tool for economic 

forecasting, particularly in volatile and dynamic economic environments. The model's ability to capture non-linear 

relationships and temporal dependencies offers a significant advantage over traditional econometric methods, providing 
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more accurate and reliable insights into economic planning and policy-making. Future research could explore the 

integration of additional economic indicators, such as GDP growth, unemployment rates, and exchange rates, to further 

enhance the model's predictive capabilities. Additionally, the application of hybrid models combining CNNs with other 

deep learning architectures, such as Long Short-Term Memory (LSTM) networks, could be investigated to address potential 

limitations in capturing long-term dependencies and cyclical patterns in inflation data. 
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