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A B S T R A C T  

Cancer remains a global health challenge, and early edge detection is crucial for improving patient 
outcomes and survival rates. Traditional diagnostic methods often face limitations in sensitivity and 
specificity, emphasizing the need to innovate approaches to enhance cancer diagnosis. This paper 
summarizes the recent applications and methodologies of Machine learning(ML) and/or Deep 
learning(DL) in bioinformatic for cancer prediction and diagnosis and how can be successfully employed 
to tackle problems such as patient classification, gene clustering, and biomarkers identification. This 
review constraints on three types of cancer: prostate, gastric, and colorectal. 

1. INTRODUCTION 

The cancer develops due to the improper regulation of cell growth and division. The human body consists of trillions of cells, 
which are the basic building blocks of life. These cells continually grow, divide, and undergo programmed cell death 
(apoptosis) to ensure the proper functioning of tissues. However, when this delicate balance is disturbed, it can result in the 
unrestrained increase of cells, leading to the genesis of cancerous tumors. Sometimes, there may be an abnormal cell growth, 
and that abnormal growth may lead to cancer. Nowadays, cancer poses a significant health burden in contemporary Australia. 
Projections indicate that approximately half of the Australian population will receive a cancer diagnosis by the age of 85. In 
2021, the mortality of people increase of about 26,000 more than in 1981. This is basically due to the growth in population 
and aging. Even though a significant down of over 24.5% in the cancer mortality rate (deaths per 100,000 individuals), 
Australia still faces a substantial cancer burden. In 2024, an estimated 169,500 new cancer cases were diagnosed, and 
approximately 52,700 individuals succumbed to the disease[1]. Bioinformatics involves the integration of biology, computer 
science and information technology to analyze and make sense of data as in Figure (1), with applications spanning different 
fields. It is a rapidly growing and promising field which has emerged due to advances in biotechnology and data analysis 
techniques. it is considering as remarkable part of the informatics of traditional health, merging biomedical information with 
computer science. The comprehensive efforts and tasks carried out in bioinformatics highlight its critical role in analyzing 
and extracting valuable insights from the ever-expanding pool of biomedical data from various perspectives[2]. The basic 
and translational recent cancer research usually generates huge amount of data which is becoming increasingly reliant on 
calculating for their elucidation. These data obtained from various sources, such as epigenomics, next-generation sequencing 
of tumor DNA and RNA, imaging technologies, and histopathological evaluations. It is predictable that data-driven methods 
will soon be vital in clinical oncology, aiding in premature prognostic, more precise diagnoses, and improved disease 
administration.  In response to this changing landscape, this volume offers a thorough overview of methods and tools for 
analyzing and interpreting cancer-related data, showcasing the latest advancements in cancer informatics. The book is set 
for a wide audience, including effective scientists in computational biology and bioinformatics, bioinformatics inventor, 
research and clinical oncologists looking for bioinformatics assistance, and cancer drug creator aiming to regulate their search 
for new composites [3]. 
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Fig. 1. The bioinformatics[2] 

Bioinformatics, an interdisciplinary field and the core of recent monocular biology where computational techniques 
improved and used to alter biological data into knowledge and extract meaningful insights from it and translate them for 
biomedical applications. Machine learning, a powerful tool within artificial intelligence, has revolutionized bioinformatics 
by enabling the development of sophisticated models capable of analyzing vast datasets and uncovering intricate patterns[4]. 
The role of bioinformatics in cancer diagnosis such as Lung, Breast, Liver, Oral, Brain, and Ovarian have been discussed in 
many review research papers [5][6].  The rapid growth of algorithms, computing power, and the volume and velocity of data 
has transformed many industries and areas of research. This can help prepare businesses for these changes by using the 
collected data to make those changes and better adapt to meet their new consumer demand. Improved and fast-tracked data 
synthesis can massively help as industries from automotive, finance and healthcare to manufacturing[7]. Recently, Deep 
learning has become among the most vital and successful machine learning Techniques. this has been refreshed the cutting-
edge performance of plenty of machine learning tasks and also make possible the development of various disciplines [8][39]. 
This paper aims at the survey of modern methods of ML and DL, explored in bioinformatics of cancer prediction and risk 
stratification. This review intends to summarize current progress in bioinformatics for carcinoma investigation. We present 
a preview of the ML techniques adopted, major results and prognostic accuracy of recent articles in the cancer detection 
settings. This review aims to provide useful insights and to act as a reference for future studies. Section 2 focuses on the 
applications of machine learning and bioinformatics to prognosis of cancers and Section 3 covers the place of deep learning 
and bioinformatics in this process. Finally, Section 4 demonstrate the study conclusions.  
 

2. BIOINFORMATICS AND MACHINE LEARNING IN CANCER 

The advancements in DL as a modern ML technology that can learn from complicate data without prior assumptions has 
been successfully applied in various bioinformatics studies, including drug-target interactions and drug synergy 
predictions[11].  DL is considered as subset of ML, has appeared as a vital technique motivated by the construction and 
function of the human brain. it is enabling the process of complex nonlinear relationship within data using artificial neural 
networks (ANNs) with multi-layers of interconnected nodes. This hierarchical form permits deep learning models to learn 
complicate patterns and features, conducted to state-of-the-art performance in numerous domains, including bioinformatics. 
speech, image recognition, natural language processing, and biomedical research are among the fields that DL has been 
successfully applied. furthermore, DL is considered as a powerful tool in these area since Its ability to extract high-level 
features from raw data, leverage distributed and parallel computing, and learn complex patterns without extensive manual 
intervention [12]. Several published articles tried to identify and solve different problems related to cancer using 
bioinformatics with machine Learning or with deep learning or as a hybrid.  
Prostate Cancer (PCa) 
Prostate Cancer Metastasis is the essential cause of mortality among patients. discovering narrative and powerful biomarkers 
is primary for realizing the mechanism of metastasis in PCa patients and promoting successful involvement[13].  
He et al.[14] intended to seek for key genes and biological paths attached to Prostate cancer through utilizing bioinformatics 
technique by Differentially Expressed Genes (DEGs) which extracted from a dataset named GSE103512 and undergone 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) paths evaluation. In same regard, Hamzeh 
et al. [15] utilized a narrative ML technique to examine prostate tumors gene expression with various Gleason outcomes and 
determine possible genetic biomarkers for every Gleason set. The overtly accessible RNA-Seq dataset was acquired and 
classified patients depend on their Gleason outcome to produce a hierarchal representation for the progression of the disease. 
Cario et al. [16] demonstrated a narrative design strategy of ML guided dashboard for enhancing the tumor variants 
recognition in cfDNA. They first initiated a paradigm to categorize and assessment of candidate variants for inclusive on a 
targeted sequential panel, then this panel was employed to test tumor alteration in PC patients’ cases with centralized disease 
in both in silico and hybrid capture settings. Wang et al. [17] identified possible multi-comics biomarkers for  the premature 
recognition of the prediction recurrence of PC patients. An entire of 494 prostate adenocarcinoma (PRAD) patients (60-
recurrent involved) from the Cancer Genome Atlas (TCGA) portal were examined by similar network fusibility and the auto-
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encoder paradigm. IQBAL et al. [18] stated that images gained from a carcinoma patients are composed of necessary and 
complex attributes that is unable to be extracted effortlessly by classical diagnostic methods. Therefore, they utilized deep 
learning techniques which are fine-tuned and separate from hand-crafted attributes. The outcome was compared with hand-
crafted traits like gray level co-occurrence matrix (GLCM), texture, and morphology by applying a non-deep learning 
classifier. Rammal et al. [19] studied the Gleason effect on several glands outcome from a novel optical microscopy method 
named SLIM. This novel optical microscopy mechanism merges the two traditional concepts in light imaging: Zernike’s 
phase contrast microscopy and Gabor’s holography. A machine learning technique were suggested to categorize these images 
into the corresponding Gleason outcome.ML methods stratified to homological persistence features effectively identify the 
correct Gleason outcome. Ying et al. [20] explored the genes with diagnostic amount in sick person with benign prostatic 
hyperplasia (BPH), discover the correlation among the immune microenvironment and the expression of diagnosis-related 
genes, and issue a molecular diagnosis reference and BPH immunotherapy. The differential expression of autophagy-related 
genes among BPH of a sick person and healthy controls was gained by differential examine. Next the genes associated to 
the diagnosis of BPH were scanned by a ML method and confirmed. Eventually, five vital genes (IGF1, PSIP1, SLC1A3, 
SLC2A1 and T1A1) were gained by Random Forest (RF) algorithm. Dai et al. [21] combined ML methods to promote a 
narrative mitophagy-related long non-coding RNA (lncRNA) signature for forecasting the advancement of PC. In utilizing 
the TCGA-PRAD data, they are identified a group of 4 key lncRNAs and formulate a risks core, exploring its possibility as 
a prognostic indicator. Table I summarizes the work related to prostate cancer diagnosis. 

TABLE I.  SUMMARIZATION OF WORKS RELATED TO PROSTATE CANCER DIAGNOSIS 

Author Data Method Key finding(s) 

He et al. 2019 [14] PCa microarray expression 

dataset GSE103512 

bioinformatic evaluation involving GO, (KEGG) 

enrichment, PPI network, hub gene identification, 

and module analysis 

 

 

- Entirely, 252 (186 upregulated 

whereas 66 downregulated) of 

Differentially expressed genes 

(DEGs) were identified 

- KLK3, CDHI, FOXA1, and EPCAM 

could possibly work as powerful and 

definitive molecular biomarkers for 

PCa. prediction 

Hamzeh et al 2019 

[15] 

-RNA-Seq data of a cohort 

consist of 104  PC sick 

person from (NCBI). 

- (GEO) 

-A novel machine learning method was applied 

for analysis-Seq dataset from NCBI's GEO 

repository was utilized. A hierarchical model with 

standard classifiers was developed. 

- Class disparity and hybrid feature selection 

methods were employed. 

-Naive Bayes and SVM classifiers were used for 

predictions. Synthetic minority oversampling 

method (SMOTE) was employed to solve 

imbalance in class. 

 

A model achieved 93.3% accuracy with 

first dataset. Validation on the second 

dataset yielded 87% accuracy. Six gene 

transcripts were identified as 

differentially expressed. Naive Bayes 

classifier outperformed others in 

accuracy. Gleason score 6 identified 

with 100% accuracy. PIAS3 and 

UBE2V2 identified as potential 

biomarkers. 

Cario et al. 2020 [16] -ICGC dataset:  derived from 

the International Cancer 

Genome Consortium (ICGC) 

which included Whole 

Genome Sequence (WGS) 

tumor variant data from 550 

PC patients. 

- UCSF Cohort dataset: 

utilized data from 23 patients 

derived from California 

University, San Francisco 

(UCSF). 

-Machine learning model for variant 

classification and scoring. 

-In silico screening of tumor variants from PC 

patients. 

-Hybrid acquisition and sequencing of cfDNA at 

2500X depth. 

-Development of a targeted sequencing panel for 

mutations. 

 

-A novel machine-learning panel 

improved tumor variant detection. 

-The panel outperformed two existing 

designs in in silico tests. 

-Detected tumor diverse in total of 18 

prostate cancer patients. 

-Identified mutations in known driver 

genes like HRAS. 

-Machine learning optimized targeted 

sequencing panel composition. 

-The approach enhances sensitivity for 

early cancer detection. 

Wang et al. 2021 

[17] 

A whole of 494 prostate 

adenocarcinoma (PRAD) 

patients (involved of 60 

repetitive) from the Cancer 

Genome Atlas (TCGA) 

-Autoencoder model for feature reduction and 

analysis. 

-Similarity Network Fusion (SNF) for clustering 

and prognostic. 

-Univariate Cox regression examine for 

recurrence association. 

-K-means clustering for sample grouping. 

-Spectral clustering for SNF sample clustering. 

 

-Six omics biomarkers were identified: 

TELO2, ZMYND19, miR-143, miR-

378a, cg00687383, cg02318866. 

-Multiomics panel achieved p-value = 

2.97 × 10 −15. 

-Five-year recurrence prediction 

performance had AUC = 0.789. 

-utilizing autoencoder with SVM 

classifier results in 97.1% of accuracy. 
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-Two distinctive repetition -risk 

subgroups were recognized in TCGA 

data. 

IQBAL et al. 2021 

[18] 

the dataset consists of 230 

for MRI scans of sick person 

with variant classes and 

representation. The dataset 

was scored by the Health 

Insurance Portability and 

Liability Act 1996 (HIPPA) 

regulations. 

- Deep learning methods: Residual Net (ResNet − 

101) and Long Short-Term Memory (LSTM) 

-ML techniques: SVM, Gaussian Kernel, k-

nearest neighbor-Cosine (KNN − Cosine), Naive 

Bayes kernel, DT , and RUS Boost tree. 

- using KNN-Cosine with accuracy 

(99.07%).  

-The LSTM method output performance 

with accuracy (99.48%),  

-exploit DL technique ResNet − 101, 

yield 100% Accuracy and AUC =1 for 

Kernel Naive Bayes, SVM, Gaussian 

and RUSBoost Tree. 

- the outcomes reveal that ResNet − 101 

outperformed than non-DL methods and 

LSTM. 

Rammal et al. 2022 

[19] 

500 images of prostate 

cancer biopsies, each with a 

size of 10,000 x 10,000 

pixels. Each image was 

composed of glands that 

averaged around 1,000 x 

1,000 pixels in size 

-Persistent-Homology-Based Machine Learning 

(PHML) for feature extraction. 

-Supervised machine Learning: RF, MN, SVM, 

LDA, DT, and Naïve Bayes for classifying grand 

image.  

-Spatial Light Interference Microscopy (SLIM) 

for imaging 

 

- - DT classifier yield accuracy of 99.3%. 

- - RF classifier yield accuracy of 80.1%. 

- - SVM classifier yield accuracy of 

84.5%. 

- Naïve Bayes classifier yield accuracy 

of 90.8%. 

- linear discriminant classifier yield 

accuracy 73.2%. 

Ying et al. 2023 

[20] 

GEO database. 

GSE6099 Dataset: 

• Contains 21 BPH samples 

and 4 control samples. 

GSE119195 Dataset: 

• Comprises 5 BPH samples 

and 3 control samples 

 

-Differential expression analysis using limma 

algorithm. 

- Machine learning algorithm for gene screening. 

- GO and KEGG enrichment analysis performed. 

- CIBERSORT algorithm for immune cell 

proportion calculation. 

-identified 125 differentially expressed 

autophagy-related genes.  

-Obtained five key diagnostic genes 

using random forest algorithm.  

-Analyzed immune cell infiltration 

related to diagnostic genes.  

-Established PPI networks for 

significant autophagy-related genes.  

-Conducted GO and KEGG enrichment 

analyses on DEGs.  

-Found significant correlation between 

IGF1 and M2 macrophages.  

Dai et al.2024 [21] Cancer Genome Atlas 

(TCGA) database 

-ML methods to promote a mitophagy-related 

lncRNA signature.  

-Statistical Analysis: Various statistical methods 

were utilized to analyze the data.  

- Student T-test was employed for continuous 

variables that spreads normally. 

- Mann-Whitney U-test was performed for 

continuous variables that non-ordinary spread  

The study successfully developed a 

narrative mitophagy-related long non-

coding RNA (lncRNA) signature that 

serves as a prognostic tool for 

forecasting the progression of PC. 

2.1 Gastric Cancer (GC)  

Gastric Cancer is among the majority widespread worldwide cancers. The molecular techniques of GC are still indistinct and 
not fully realized. GC situations are mainly detected at an advanced stage, revealing poor prediction. The development in 
molecular biology mechanisms permits us to gain deeper comprehension of accurate molecular techniques and permit us to 
recognize the key-genes in the progression and carcinogenesis of GC.  Shon et al. [22] proposed a classification technique 
leveraging DL and determine its performance to the gene term data gained from GC sick-person. They merged the RNA-seq 
gene ex-pression data with clinical data, searched candidate genes, and examined them by applying Convolutional Neural 
Network (CNN) algorithm. During their work, they carry out learning by the type of sample and essential level of stomach 
cancer patients and confirm the outcomes. Gilani et al. [23] searched for determine possible miRNAs for Gastric cancer by 
using GSE106817 data with 2,566 miRNAs to train the ML paradigms. They utilized the Boruta ML variable election method 
to recognize the powerful miRNAs attached with GC in the training sample, then confirmed the prognoses models in the 
separated data sample of GSE113486. Eventually, an ontological examination was performed on recognized miRNAs to 
elicit the pertinent relation.  Chen et al. [24]explored the possible hub genes of GC accompanied by a diagnostic estimate. 
The narrative biomarkers were exposed across many databases of gastric cancer–related genes. The hub genes (ESRRG, 
ATP4A, and ATP4B) were exposed by merged of weighted gene co-expression network analysis (WGCNA), gene–gene 
interaction network analysis, and supervised attributes selection methods. ML techniques involving data preprocessing, 
cross-validation, and model selection. achievement assessments were tested on the hub-gene expression profiles in five Gene 
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Expression Omnibus datasets and confirmed on a GEO external validation (EV) dataset. Niu et al. [25] utilized a data from 
the GEO dataset to show DEGs among normal gastric tissues and GC. KEGG and GO enrichments were applied to examine 
the task of DEGs and the STRING database and Cytoscape s/w to create protein–protein network and discover hub genes. 
The expression levels of hub genes were assessed by employed TCGA database. Talebi et al. [26] developed predictive 
models by employing different ML classifiers depend on both clinical variables and demographic to forecast metastasis 
status of patients with Gastric Cancer. Azari et al. [27] identified possible diagnostic and prediction of miRNAs in Gastric 
Cancer with the implementation of ML methods. To detect popular molecular techniques of the miRNAs, the targets of joint 
gene were detected by online databases like miRWalk, Targetscan, and miRDB, Functional and fertility analyzes were 
applied through utilizing Kyoto Database of Genes and Genomes (KEGG) and Gene Ontology (GO), also recognition of 
protein–protein interactions (PPI) through STRING database. Xie et al. [28] employed ML to determine GC diagnostic genes 
and explore their relation with immune cell infiltration. Suriya et al. [29] tested the Transcriptome profiles of Gastric Cancer 
patients to determine DEG among the tumor and adjacent normal tissues. later, they built networks for protein–protein 
interaction to discover the important hub genes. Besides the bioinformatics incorporation of ML Techniques like SVM, the 
recursive attributes elimination was utilized to choose the maximum informational genes. Table II summarizes the work 
related to Gastric cancer diagnosis. 

TABLE II.  SUMMARIZATION OF WORKS RELATED TO GASTRIC CANCER DIAGNOSIS 

Author Data Method Key finding(s) 

Shon et al. 2019 [22] TCGA, a worldwide cancer database 

contains data of 60,483 genes collect from 

334 sick person having Gastric Cancer. 

-Principal Component Analysis 

(PCA) for extracting features.  
- (CNN) for classification.  

-Heatmap generation for data 

visualization.  
 

-classified sample type   with 

95.96% accuracy. 
-Obtained 50.51% accuracy for 

important status classification.  

-Identified 320 principal 
components from gene expression 

data.  

-Generated heatmap images for 
CNN input.  

-The method can predict stomach 
cancer prognosis effectively.  

-Increased data can resolve 

overfitting issues.  
-High accuracy achieved for 

sample type classification.  

Gilani et al. 2022 [23] GSE106817 dataset consists of 2,566 

miRNAs data gained from 2,759 

noncancer controls, and 115 GC situations 

(4%).  

- Machine learning variable 

selection method named Boruta 

was utilized.  

-Five machine learning 

algorithms: RF, LR, DT, XGBT, 
ANN.  

-Synthetic Minority 

Oversampling method (SMOTE) 
was implemented for regulate the 

training data.  

-GeneCodis tool was used for 
ontological analysis of miRNAs.  

-Decision trees were employed 

for classification with a cut-off 
point.  

-115 out of 2,874 patients had 

gastric cancer.  

-30 miRNAs identified as potential 

biomarkers for gastric cancer.  

-hsa-miR-1343-3p ranked 
maximum among identified 

miRNAs.  

-hsa-miR-1343-3p predicted 
gastric cancer with 100% 

precision.  

-Ontological analysis confirmed 
strong relationships with cancer-

associated genes. 
 

Chen et al. 2022 [24] -6 datasets from the Gene Expression 

Omnibus (GEO). 
 include GSE19826, GSE27342, 

GSE29272, GSE54129, GSE66229.  

-GSE66229 was used for weighted gene 

coexpression network analysis.  

-GSE33335 served as an independent 

dataset for external model assessment. 

-Bioinformatics methods for 

gene selection and analysis.  
-Weighted gene co-expression 

network analysis (WGCNA).  

- analysis of Gene-gene 

interaction network. 

-Supervised attributes selection 

methods.  
-Machine learning (ML) 

techniques for diagnostic models.  

-Stratified k-fold cross-
validation. 

-Random permutation validation. 

-Immunohistochemistry for gene 
expression verification.  

-3 hub genes identified: ATP4A , 

ESRRG, and  ATP4B.  
-Support vector machine model 

showed highest diagnostic 

performance.  

-Achieved 0.93 AUC on test 

dataset, 0.99 on validation.  

-Semi-supervised model also 
demonstrated strong predictive 

ability.  

- outcomes indicate mild impact 
on auxiliary diagnosis.  

-Comprehensive analysis enhances 

objectivity of diagnostic model. 
-Hub genes validated through 

multiple bioinformatics methods.  

 Niu et al. 
2022 [25] 

The dataset of RNA-sequencing consisting 

of GC tissue swabs as well as ordinary 

tissue swabs gained from the GEO dataset 

and three GEO datasets, including 

GSE19826GSE54129, and GSE118916. 

-Differentially expressed genes 
(DEGs) were screened among 

GC as well ordinary tissues.  

-GO and KEGG fertility 
analyzed the function of DEGs.  

-Identified 607 differentially 
expressed genes (DEGs) in gastric 

cancer.  

-DEGs mainly enriched in 
extracellular matrix and integrin 

binding.  
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-STRING dataset and Cytoscape 
s/w generated protein-protein 

networks 
 

-Four hub genes proposed: 
COL1A1, COL5A2, P4HA3, 

SPARC.  

-COL1A1, COL5A2, P4HA3, 
SPARC show high diagnostic and 

prognostic value.  

-Survival analysis linked hub 
genes to overall survival of GC.  

-ROC evaluation verified max 

value for diagnostic of SPARC.  
-Correlation analysis showed 

strong interrelation among the four 

hub genes. 
 - recognized about  294 up-

regulated whereas 313 down-

regulated genes in GC.  

Talebi et al.  
2023 [26] 

-The study used a dataset of 733 gastric 
cancer patients.  

- The dataset included 10 features related 

to demographics and clinical 
characteristics.  

- Data was collected from electronic 

records at Taleghani tertiary hospital.   

-Machine learning classifiers:  
- Naive Bayes  

- (SVM) 

-Neural Network (NN) 
-Decision Tree (DT) 

-Logistic Regresion (LR) 

- Random Fores (RF) 
 

 

-SVM is the top-performing 
machine learning model. 

-NN and RF are also effective 

algorithms.  
-Tumor size and age are crucial 

variables in RF model. 

Azari et al.2023 [27] -TCGA database 

- miRWalk, miRDB, and 

Targetscan.databases 

- Kyoto of Genes and Genomes (KEGG) 

and Gene Ontology (GO) database. 

-STRING database 

 

 

-ML techniques: SVM, Random 
Forest, k-NN, Logistic 

Regression, DTS.  

-Data analysis using    TCGA 
database.  

 Heatmap analysis for feature 

selection.  
-ROC curve for diagnostic 

evaluation.  

-evaluation of Protein-protein 
interaction network by utilizing  

STRING dataset.  

Among the ML algorithms, SVM 

was chosen (AUC:88.5%, 

Accuracy:93% in GC). 

-A panel of 29 miRNAs was 
identified as potential biomarkers.  

-the hsa-miR-21, hsa-miR-133a, 
hsa-miR-146b, and hsa-miR-29c 

showed high prediction power.  
 

Xie et al 2023 [28] -GEO Datasets: 
     GSE13911, GSE15459,  

     GSE19826, GSE54129 

     GSE79973 
These five datasets were merged to form the 

training set, which included a total of 371 

samples for GC. Furthermore, 77 samples 
of normal gastric tissue, after removing 

batch effects. 

 
 

-Machine learning algorithms: 
LASSO and SVM-RFE.  

-Bioinformatics analysis of 

gastric cancer datasets.  
-Receiver operating characteristic 

(ROC) curve evaluation.  

-CIBERSORT for immune cell 
infiltration analysis.  
 

-Eight candidate diagnostic genes 
for gastric cancer were identified.  

-Six diagnostic genes showed 

significant prognostic value.  
-Diagnostic genes are more 

correlated to immune cell 

infiltration.  
-Bioinformatics & machine 

learning methods were effectively 

utilized. 

Suriya et al. 2023 [29] -PRJNA555737 and PRJNA435914 

acquired from the National Center for 

Biotechnology Information-Sequence 

Read Archive database  

- (PRJNA555737) compose of 12 swabs 

(six tumors and six adjacent ordinary 

tissues) & PRJNA435914 compose of 

sixty-eight swabs. 

- profiling transcriptome of Stomach 

Adenocarcinoma (STAD) and their 

conformable clinical data were summed 

from the TCGA database. it consist of 407 

swabs (33 normal and 376 tumor tissues) 

-Protein-protein interaction (PPI) 

network construction. The 

Network Analyzer (ver. 4.4.8) 

bundle is utilized to evaluate 

network for the estimation of the 

degree and betweenness 

centrality. 

- (SVM) with recursive feature 

elimination (RFE) technique was 

applied for attributes selection of 

diagnostic genetic markers from 

the important genes linked with 

Gastric Cancer. 

-Identified 160 significant genes 

related to gastric cancer.  

-Found about88 upregulated and 72 
downregulated genes.  

-Discovered 10 hub genes through 
protein-protein interaction 

networks.  

-KIF14 and TRIP13 are potential 

diagnostic biomarkers.  

-TRIP13 overexpression linked to 

poor prognosis in gastric cancer.  
-High diagnostic value for KIF14 

and TRIP13 in ROC analysis.  

-KIF14 and TRIP13 are potential 
diagnostic biomarkers for gastric 

cancer.  

-The study aids understanding of 
gastric cancer pathophysiology.  

-Integrated bioinformatics 

approaches revealed significant 
gene candidates.  
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2.2 Colorectal cancer (CRC) 

CRC is a 3rd majority widespread tumor all over the world. It is approximated that the universal encumbrance of CRC will 
raise to more than 2.2 million new instances and 1.1 million yearly deceases by 2030 [30].  LI et al. [31] used the data of 
gene mutation, gene expression and gene relation to build attribute vectors of gene pattern and exploit it to learn classification 
models for pattern identification and to mine seven colorectal cancer-related potential driver genes. The aim is not only to 
confirm the advantage of extracting characteristics but considered it as a significant point to estimate the growth and 
alteration of colorectal cancer, and to demonstrate that employing gene network techniques to mine driver genes is 
remarkably more suitable than mining techniques without utilizing gene networks. Hammad et al. [32]  studied the diagnosis 
of CRC by integrating bioinformatics and machine learning to recognize and validate potential biomarkers from gene 
expression data. Gene Ontology (GO) and Kyoto Enrichment of Genes and Genomes (KEGG) evaluation were applied to 
recognize biological procedures associated with the DEGs.  Lacalamita et al. [33] focused on CRC carcinogenesis by 
develops a prognostic-classifier for adenoma-carcinoma sequence by microarray gene expression profiles of essential 
adenoma, CRC, and ordinary colon epithelial tissues. expression profiles of four genes from the Gene Expression Omnibus 
database, consisting of 465 swabs were preprocessed to recognize (DEGs) among adenoma tissue and essential CRC. The 
classification was performed with machine learning algorithms. Acharjee et al. [34] evolved a narrative ML to survey CRC 
gene corporation. various ML techniques were applied as classifiers to recognize genes that can be utilized as diagnostics 
for CRC using gene expression and clinical data. Gene ontology enrichment evaluates these differentially expressed genes 
(DEGs) were applied and prognosticated that gene signatures were attached with miRNAs.  Xue et al. [35] identifies key 
genes linked to ferroptosis in CRC. Machine learning and bioinformatics evaluation were utilized for gene 
identification. Eleven ferroptosis-related differentially expressed genes were identified. Four hub genes were determined: 
TFR2, NOX4, ALOXE3, and CA9. Bostanci et al. [36] explored the integration of omics technologies, particularly 
transcriptomics, with ML and DL to enhance diagnostic and prognostic capabilities for CRC. The research focused on using 
RNA-seq data from circulating extracellular vehicles (EVs) to predict colon cancer and classify its stages, leveraging the 
unique RNA profiles found in tumor-derived EVs and utilizing log2-transformed RPM values for reliable RNA-seq analysis, 
focusing on comparing healthy individuals with cancerous patients. miRNA isoform and exRNA stability analyses were 
conducted to enhance the understanding of RNA profiles relevant to colon cancer. Five canonical ML methods and three DL 
algorithms were used to pronounce the colon cancer and its stages. Vaziri-Moghadam et al. [37] identified diagnostic gene 
biomarkers for CRC by evaluating DEG from tumor and ordinary swabs. Nine candidate genes were recognized using 
LASSO logistic regression. Liang et al. [38] investigated E3 ubiquitin ligase-associated genes and colon cancer. Gene 
expression profiles and clinical data were analyzed. Two molecular clusters of E3-related genes were identified. A prediction 
model was built using machine learning techniques. Table III summarizes the works related to colorectal cancer diagnosis. 

TABLE III.   SUMMARIZATION OF WORKS RELATED TO COLORECTAL CANCER DIAGNOSIS 

Author Data Method Key finding 

LI et al. 2020 [31] CGC database 

NCBI (PubMed) database 

-Machine learning methods: weighted KNN, 
Weighted Naïve Bayes, and Multi-level SVM 

for classification models. 

-Signed random walk restart method ranks 
nodes in signed networks. 

-Gene mutation and expression data are 

analyzed for feature extraction. 

-The study successfully identifies 

potential colorectal cancer driver genes. 

-Gene network methods outperform non-

network methods in predictions. 

-Structural features significantly enhance 

classification ability. 

-Feature fusion improves predictive 

ability for driver genes. 

Hammad et al. 

2021 [32] 

-The gene expression microarray 

GSE103512 dataset from GEO 

comprised of a entirely 69 swabs 

(57 colorectal cancers with 12 

ordinary swabs). 

-TCGA and GEPIA datasets. 
For validation 

-Bioinformatics analysis of gene expression 

microarray data. 

-Machine learning techniques for biomarker 

identification. 

-Differentially expressed genes (DEGs) 

identification and functional analysis. 

-Protein-protein interaction (PPI) network 

analysis using STRING database. 

-Support Vector Machine (SVM) for 

diagnostic value prediction. 

-Receiver Operating Characteristic (ROC) 

curve analysis for biomarker evaluation. 

-Kaplan-Meier survival analysis for 
prognostic assessment. 

-Identified 105 differentially expressed 

genes (DEGs) for CRC. 

-Ten hub genes were determined as 
potential biomarkers for CRC. 

-Four hub genes correlated with CRC 

tumor stages. 
-ROC curve AUC exceeded 0.92 for 

biomarker prediction. 

-Survival analyses confirmed prognostic 
values of hub genes. 

-Functional enrichment showed DEGs 

involved in cancer progression 
processes. 
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-ROC curve analysis for specificity and 
sensitivity evaluation. 

Lacalamita et al. 

2021[33] 

The raw microarray data was 

sourced from the Gene Expression 

Omnibus (GEO) database, which is 

a public repository for gene 

expression data. 

The merged dataset consists of a 
entirely 465 samples, classified 

into three seperate groups: 

-Healthy Controls: 105 samples 
from individuals without any 

colorectal abnormalities. 

-Adenoma Group: 155 samples 
from patients with adenomatous 

polyps, which are precursors to 

cancer. 
-CRC Group: 205 samples from 

patients diagnosed with colorectal 

cancer. 

-Microarray gene expression profiling. 

-Differential expression analysis using 

unpaired t-test. 
-Feature selection via Boruta algorithm and 

Stepwise Regression. 

-K-Means clustering method. 
-Machine learning algorithms: LM, RF, k-

NN, ANN. 
 

-11,530 genes identified as differentially 

expressed. 

-240 important genes selected using the 
Boruta algorithm. 

-56 highly important genes determined 

for classification. 
-k-NN model achieved 91.11% accuracy 

on validation cohort. 

-Six DEGs identified related to patient 
prognosis. 

-Potential biomarker for early CRC 

diagnosis proposed. 
 

Acharjee et al. 

2022 [34] 

GEO Dataset: 

GSE44861 

GSE20916 

GSE113513 

-LR, naive Bayes. 

- Adaboost ,ExtraTrees . 

-Random Forest and XGBoost. 
-Enrichment analysis was performed on gene 

signatures. 

-Fivefold cross-validation, bootstrapping, and 
LOOCV were used to prevent overfitting. 

 

- LR with an accuracy of 96.4% using 

GSE44861 as training data and 

GSE113513 as testing data. 
-The Random Forest with an accuracy 

of 98.2%. 

-The Extra Tree classifier showed 
preferable achievement when 

GSE113513 was used as training data 

and GSE44861 as testing data. 
-Naïve Bayes Classifier 

When using GSE20916 as training data 

and GSE44861 as testing data yielded an 
accuracy of 90.1%. 

- Logistic Regression achieved using 

GSE20916 as training data and 
GSE113513 as testing data, better 

performance by yielding an AUROC 

of 99%. 
- When GSE44861 was used as training 

data and GSE113513 as testing data. The 

study successfully identified novel gene 
associations with CRC that could serve 

as diagnostic markers, emphasizing the 

potential of machine learning in 
translational research for cancer 

diagnostics 
 

Xue et al. 2023 

[35] 

(GEO) datasets for CRC from the 

National Center for Biotechnology 

Information (NCBI). 

 

-LASSO regression and SVM models were 

built. 
-Immune infiltrates were identified using the 

CIBERSORT algorithm. 

-Correlation analyses were performed using 
Spearman and Pearson algorithms. 

-Machine learning techniques were applied 

for gene identification. 
 

Recognized 11 ferroptosis-related 

differentially expressed genes (DEGs) in 
CRC. 

-Four hub genes: NOX4, TFR2, 

ALOXE3, CA9. 
-NOX4 expression correlates with 

immune cell infiltration. 

-Low NOX4 levels linked to favorable 
patient prognosis. 

-Machine learning models demonstrated 

excellent diagnostic ability. 

Bostanci et al. 

2023 [36] 

The dataset is a   well-structured 

collection of RNA-seq data 

includes a total of 300 samples, 

which are divided into healthy and 

cancerous categories. Initially, 50 

healthy samples were randomly 

selected, and to augment this, 50 

additional healthy samples were 

generated, resulting in 100 healthy 

samples in total. For the cancerous 

samples, 100 augmented cancerous 

-Canonical ML classifiers: kNN, LMT, RT, 
RC, RF. 

-DL paradigm: 1-D CNN, LSTM, BiLSTM. 

-Genetic algorithm for hyper-parameter 
optimization. 

-Min-max normalization for data 
preprocessing. 

-Feature selection to identify informative 

exRNA transcripts. 
 

-Canonical ML techniques achieved 
97.33% accuracy in predictions. 

-1-D CNN model reached 97.67% 

accuracy in cancer prediction. 
-BiLSTM model achieved 98% accuracy 

in cancer stage classification. 
-RC, LMT, and RF performed best in 

cancer prediction. 

-Feature selection improved model 
accuracy and reduced training time. 
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pattern were generated from a 

randomly selected cancerous 

sample, leading to a whole of 200 

cancerous patterns. 

-McNemar's test indicated statistically 
significant performance differences 

among models. 

Vaziri-Moghadam 

et al. 2024 [37] 

The GEO database -Differential gene expression analysis 
utilizing 'limma' bundle. 

-Gene co-expression network analysis with 

'CEMiTool' package. 
-LASSO logistic regression for candidate 

gene screening. 

-ML : SVM, RF, GBM, method and ANN. 

-Identified 283 differentially expressed 
genes (DEGs) in CRC. 

-Eleven candidate diagnostic genes were 

recognized using LASSO logistic 
regression. 

-Nine genes showed AUROC values 

over 0.92 in validation sets. 
-All machine learning algorithms 

achieved AUROC scores above 0.95. 

Liang et al. 2024 

[38] 

TCGA, GTEx, GSE17537 and 

GSE29621 databases 

-Gene expression profiles and clinical data 
were acquired. 

-Coexpression analysis identified E3-related 

genes (ERGs). 
-Weighted gene coexpression network 

analysis (WGCNA) was conducted. 

-Differential expression analysis was 
performed. 

-Consensus clustering recognized two 

molecular clusters. 
-Cox regression evaluation was conducted. 

-Prognostic model constructed using 10 

machine learning algorithms. 

-Two E3-related gene clusters identified 
in colon cancer. 

-Cluster A shows better prognosis than 

cluster B. 
-Prognostic model validated in internal 

and external datasets. 

-Significant immune infiltration 
differences between risk groups 

observed. 

-High-risk group has lower IC50 for 
some antitumor drugs. 

-Ectopic PRELP expression inhibits 

CRC cell migration and proliferation. 
 

 

3. CONCLUSIONS 

This study shows a comprehensive overview of the current works on cancer prediction using ML and DL approaches with 
bioinformatics. The implementation of these techniques in bioinformatics has escort in a new era for cancer prediction and 
diagnosis, offering unique potential for improving early detection, diagnostic accuracy, and personalized treatment strategies. 
This review underscores the transformative impact of ML and DL algorithms in analyzing complex genomic, proteomic, 
and clinical data, enabling the identification of subtle patterns and biomarkers associated with cancer. These advancements 
facilitate the development of predictive models with high precision, surpassing traditional methods in their ability to handle 
large-scale and heterogeneous datasets. Despite these promising developments, challenges persist. Issues such as data 
scarcity, imbalanced datasets, and model interpretability continue to hinder the translation of these technologies into clinical 
practice. recording these limitations needs to leverage of robust, explainable algorithms and the integration of diverse, high-
quality datasets. Furthermore, interdisciplinary collaboration among clinicians, bioinformaticians, and data scientists is 
essential to ensure the clinical relevance and usability of these models. Ethical considerations, including data privacy and 
algorithmic fairness, must also be prioritized to foster trust and widespread adoption. In conclusion, ML and DL hold 
immense promise for revolutionizing cancer prediction and diagnosis. By addressing existing challenges and fostering 
innovation, these technologies can remarkably improve the precision and efficiency of cancer care, paving the way for a 
future where premature detection and personalized treatment are accessible to all. 
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