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A B S T R A C T  

GeoAI is the internationally recognized term that describes the powerful nexus of artificial intelligence, 
spatial science, and big data analytics presents new and innovative avenues for understanding and 
addressing the challenges and opportunities faced by human societies at a geographic scale. This 
literature review aims to consolidate the key applications of GeoAI specifically for human geography 
and spatial networks, demonstrating its revolutionary potential in fields such as urban planning, 
population mobility, social network analysis, health geography, or environmental justice. The review 
describes the methodologies used from machine and deep learning to graph neural networks and the 
enabling geospatial technologies, which include GIS, remote sensing and spatial databases. Here we 
summarize our comprehensive review of existing studies, their limitations, challenges in the field such 
as spatial data bias, absence of ground truth, computation efficiency, ethical issues, and interpretability 
of AI models. Other emerging approaches such as real-time GeoAI, smart cities and digital twins’ 
integration, explainable AI and human-centered approaches are also covered. Findings This review 
highlights the importance of cross-domain collaboration and ethical guidelines to ensure GeoAI 
technologies not only bring the best technical expertise, but also are responsibly and inclusively 
embedded into geographic decision-making.

1. INTRODUCTION 

GeoAI, the intersection of Artificial Intelligence (AI) with geospatial technologies, has evolved as an interdisciplinary 

field that merges AI, spatial science, and big data analytics. The integration of GeoAI into research has opened new frontiers 

in the study of spatial phenomena impacting a range of fields, particularly in human geography, where understanding both 

spatial relationships and human-environment interactions is central to the discipline. Instead, GeoAI is the use of machine 

learning (ML), deep learning (DL) and other such techniques to analyze and interpret complex geographic data sets [1]. 

These new capabilities reveal new insights into spatial behavior, mobility patterns, and socio-economic dynamics that 

were previously not easy to quantify using traditional GIS tools [2]. 

Human geography studies the spatial aspects of human existence such as population distribution pattern, urban 

development, migration and socio-economic disparities, etc. The incorporation of AI into human geography makes it 

possible to analyze these phenomena in ways that are more dynamic, predictive, and scalable. [3] Researchers can model 

human behavior in urban spaces, detect patterns in social and spatial (human-) networks, and identify transitioning 

demographics. The shift from describing the process to performing predictive modeling represents a paradigm shift in the 

field supported by data availability from remote sensing, mobile apps, and social media platforms [4]. 

Spatial networks, which are defined by nodes representing human or spatial entities, and edges representing connections 

(e.g. transportation systems, social ties, migration flows), are fundamental structures through which we understand spatial 

organization and interactions. AI applications for analysis of such networks, especially with graph theory and neural 

network models, have also demonstrated significant success in discovering hidden relationships and predicting future 

network connectivity scenarios [5]. And there are examples applied in urban planning, in disaster prevention and response, 
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in optimization of transport infrastructure, regional development studies, etc. Hence, GeoAI offers the methods to go 

beyond static spatial analysis and towards dynamic modeling of interdependent human systems. 

Reviewing the applications of GeoAI in human geography and spatial networks is important because there is a burgeoning 

body of literature and tools for researchers to leverage. However, despite successful results found in isolated field studies, 

whether on land use classification, population mobility modeling, or crime mapping, a holistic synthesis and integration of 

these works has yet to be done. We seek to gap that by exploring more detailed applications, methods, data, and challenges 

owed to human geo- and network-based phenomena in this sub-perspective of GeoAI [3], [6]. This review also discusses 

how GeoAI enhances spatial decision making and planning. To add context to this discussion.  The framework to ensure 

the linkage of theory to practice of this literature review is as described in Figure. 1. It emphasizes that AI technologies 

(e.g., machine learning, deep learning, and computer vision) and geospatial tools (e.g., GIS, remote sensing, and spatial 

data mining) are integrated together and jointly applied to multiple domains of human geography and spatial networks. 

This perspective diagram provides a basic insight into the methodological universe discussed in subsequent worlds. 

 

Fig. 1. Conceptual framework showing the intersection of AI, Geospatial Big Data, and Computing in the formation of GeoAI, with relevant techniques 

and data sources. 

 

2. RELATED WORKS 

The past few years have seen ample research around the convergence of geospatial technologies and artificial intelligence. 

Initially applied to human geography, GeoAI brought methods of machine learning and statistical modeling to automate 

existing spatial analysis techniques. At [7] proposed a fundamental framework combining spatial statistics and deep 

learning for human mobility pattern exploration in urban space. They highlighted the significance of spatially explicit data 

in improving AI predictions and paved the way for building sophisticated GeoAI systems that can make inferences about 

complex geographic relationships. 

One of the important research fields of GeoAI is urbanization and land use classification. As an example, [8] used CNNs 

along with high-resolution satellite images for urban growth boundary classification. Their results showed that AI models 

can achieve high levels of spatial accuracy, comparable to traditional remote sensing methods. Similarly, [9] leveraged 

random forest algorithms (Breiman et al., 2001) to map urbanization trends across Asia, demonstrating that ensemble 

learning techniques can efficiently ingest heterogeneous geospatial datasets. 

GeoAI has also opened up new avenues within the field of population mobility and movement research, relying on mobile 

phone use, GPS trajectory data and social media activity for modeling human mobilities. At [10] applied spatial-temporal 

clustering and deep learning to model daily migration flows in megacities, which improved urban planning and transport 

modeling. Their work highlights how AI-driven models can manage live, dynamic geospatial data to better assist human 

geographic research. Similarly, [11] lists RNNs used for temporal prediction toward inter-city population flow, showing 

significantly better time-series forecasting accuracy than classical time-series models. 
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AI Applications in Mapping Social Interaction and Networks within Human GeographyAI techniques have also been 

transformative for social network analysis within human geography. At [12] explored spatial social networks through 

graph neural network (GNN) along with geographic information system (GIS), which will identify central actors and spatial 

clusters in urban communities. Their approach opened a pathway to explore not just the topology of networks but also the 

spatiality of human interconnectedness which is a critical aspect of our understanding of urban coalescence, urban fracture 

and information diffusion in smart cities. These lines of research show potential to integrate spatial measures with social 

connectivity. 

In another area, GeoAI is particularly important in disaster management and spatial risk assessment. At [13] proposed that 

AI-augmented risk maps be generated based on the combination of geospatial big data, LIDAR, and deep learning 

classifiers to identify flood vulnerability. The framework enabled quick and automatic assessment of high-risk regions that 

could help local authorities in both pre-disaster preparedness, and emergency response. Meanwhile, other AI models have 

been adapted for forecasting the propagation of fires, disease outbreaks, and pollution, demonstrating the utility of GeoAI 

for spatial risk analytics. 

However, multiple studies point to some challenges of applying AI to human geography. This exacerbates challenges 

related to biases in spatial data, interpretability of models, a lack of true-label data, and ethical issues - including privacy 

and surveillance concerns. With [14] stressed that when models guiding public policy or community development decisions 

are used on spatial research, such research should use explainable AI. In addition, researchers [15] encourage the 

development of hybrid models leading to rule-based spatial theory combined with data-driven AI methods that can 

maintain both veracity and theoretical soundness. 

In addition, we provide a summary of the diversity of studies on the uses of Geospatial AI in human geography and spatial 

networks, shown in Table I, to supplement the narrative review discussed in this section. The table summarizes the scope 

of each study, the methodology or AI model implemented, the form of geospatial data employed, and the key findings or 

contributions. This comparative perspective casts into relief both the range of fields that have been the subject of GeoAI 

research, and the methodological innovation that has occurred in the last few years. 

TABLE I. SUMMARY OF KEY STUDIES ON GEOSPATIAL AI APPLICATIONS IN HUMAN GEOGRAPHY AND SPATIAL NETWORKS 

Study 

Reference 

Focus Area Methodology/Model Type of Geospatial 

Data 

Key Findings 

[7] Human movement 

modeling 

Deep learning, spatial statistics Urban spatial data Proposed foundational GeoAI framework; 

enhanced interpretation of human mobility 

[8] Urban land use 

classification 

Convolutional Neural 

Networks (CNN) 

High-res satellite 

imagery 

Accurate classification of urban areas 

compared to traditional RS methods 

[9] Urban expansion 
analysis 

Random Forest Satellite imagery Mapped long-term urban growth trends in Asia 
with high efficiency 

[10] Population mobility 

modeling 

Spatio-temporal clustering, 

Deep Learning 

Mobile GPS data, 

social media 

Tracked daily human mobility in cities for 

better urban planning 

[11] Migration forecasting Recurrent Neural Networks 
(RNN) 

Social media & 
temporal data 

Achieved high prediction accuracy of inter-
city migration flows 

[12] Social network 

analysis 

Graph Neural Networks 

(GNN), GIS 

GIS + Social 

connectivity data 

Detected spatial clusters and key actors in 

urban social networks 

[13] Disaster risk mapping Deep learning classifiers, 
LIDAR 

Geospatial big data, 
LIDAR 

Automated high-risk zone identification for 
emergency planning 

[14]; [15] Methodological 

challenges 

Explainable AI, Hybrid 

models 

Mixed spatial 

datasets 

Addressed bias, interpretability, and ethical 

issues in spatial AI 

 

3. METHODOLOGIES AND TECHNOLOGIES IN GEOAI 

The convergence of innovative AI techniques with geospatial technologies has led to the emergence of Geospatial 

Artificial Intelligence (GeoAI). It reviews important computational methods, including machine learning (ML), deep 

learning (DL), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and graph neural networks 

(GNNs), in addition to the technologies that make them possible, such as geographic information systems (GIS), remote 

sensing, spatial databases, and high-performance computing (HPC). Collectively these methods and approaches facilitate 

the analysis and modeling of complex spatial phenomena important to human geography and spatial networks. 

3.1 Machine Learning and Deep Learning in GeoAI 

Machine learning is the engine of many GeoAI applications, including models that can "learn" from spatial data and 

recognize patterns without needing to be programmed explicitly. Common supervised learning techniques for land use 

classification, socio-spatial modeling and population prediction include support vector machines (SVM), decision trees, 

and ensemble methods such as random forests [1]. In detecting spatial patterns and anomalies in migration or mobility 

data [16], unsupervised techniques, particularly the k-means and DBSCAN clustering techniques, are applied. 
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Deep learning, a subset of the greater ML framework, allows for more intricate spatial representations through hierarchical 

feature learning. Convolutional neural networks (CNNs) are commonly used to address image-based geospatial tasks, 

particularly urban area detection, land cover mapping, and building extraction with high-resolution remote sensing images 

[17]. Recurrent neural networks (RNNs), especially long short-term memory (LSTM) networks, have proven to work well 

for modeling temporal geospatial sequences, e.g. migration flows [17] or traffic dynamics [18]. Such models can also 

capture spatial and temporal dependencies and are thus well suited for studies of dynamic human geographies. 

3.2 Graph Neural Networks and Network-Based Modeling 

Graph neural networks in human geography graph learning architectures: new solution to spatial and social networks. 

Spatial entities like urban zones or communities are modelled as nodes in GNN-based models, and their relationships (e.g. 

transport links or migration paths) as edges. These models have shown success in detecting influential network actors, 

community clusters, and variations in spatial connectivity over time [19]. GNNs naturally model the non-Euclidean 

structures which is a significant paradigm shift away from classical pixels/raster type data heliocentric-models or vector 

type data based centripetal models. 

For example, [20] used GNNs on social network data with embedded geographic coordinates which revealed spatial 

clustering in urban interactions. Such approaches are relevant to the study of urban segregation, social capital, and 

infrastructure access & vulnerability. GNNs are a suitable candidate for spatial behavior analysis and geospatial predictive 

modeling because they merge the structure of network topology with spatial information. 

3.3 Geospatial Technologies: GIS and Remote Sensing 

GIS is the key technology used to store, manage, and analyze spatial data. GIS technologies enable data preprocessing, 

spatial querying, and visualization; thus, they are an integral part of the GeoAI pipeline [21]. Automation of tasks like 

geocoding, spatial interpolation, proximity analysis, etc. is possible through the integration with AI algorithms. Also, GIS 

is sometimes used as a post-processing tool to interpret and contextualize AI model outputs in space. 

Multispectral and hyperspectral imagery are some of the remote sensing technologies through which crucial geospatial 

data inputs for AI models can be generated. Fine-grained spatial analysis over time is facilitated by satellite images from 

Landsat, Sentinel, and commercial satellite suppliers. Remote sensing with AI has also been used in monitoring urban 

sprawl, and environmental change and resource distributions [22]. Moreover, using time-series remote sensing imagery 

with DL models significantly improve change detection in urban and rural landscapes. 

3.4 Spatial Databases and Big Data Infrastructure 

GeoAI relies on spatial databases that are designed to handle the enormous scale and diversity of geospatial data. Spatial 

indexing, topology processing, and real-time data integration are also supported by the systems [23] including PostGIS, 

Oracle Spatial, Spatiality. These databases facilitate fast searching of location-based datasets and are playing an increasing 

role in AI pipelines that preprocess data and extract features on the fly. 

The same goes for big data infrastructure—the use of distributed computing frameworks like Apache Hadoop and Spark—

continuing to be a crucial element to supporting GeoAI workflows. Such systems allow parallel processing over these 

terabyte-scale data sets like mobile phone records or LiDAR data or social media check-ins. Together with GPU-

accelerated computation, high-performance computing (HPC) platforms further enable such training of complex DL 

models over large spatial-temporal datasets at scale [24]. 

3.5 Comparative Overview 

Table II provides a comparative overview of the major AI methodologies and geospatial technologies used in human 

geography and spatial network analysis. It summarizes their typical applications, data requirements, and strengths in the 

context of GeoAI. 

TABLE II. COMPARATIVE OVERVIEW OF AI METHODS AND GEOSPATIAL TECHNOLOGIES IN GEOAI APPLICATIONS. 

Method / Technology Typical Applications Data Requirements Key Strengths 

Machine Learning (ML) Land use classification, demographic 

modeling 

Structured spatial/tabular 

datasets 

Easy to implement, interpretable 

models 

Deep Learning (DL) Image classification, feature 

extraction, pattern detection 

High-resolution imagery, time-

series data 

Captures complex spatial and 

temporal features 

Convolutional Neural 

Networks (CNNs) 

Urban boundary detection, building 

extraction 

Satellite or drone imagery Excellent in handling spatial data 

with imagery 

Recurrent Neural Networks 

(RNNs / LSTM) 

Migration and mobility prediction, 

temporal trends 

GPS traces, time-tagged 

population data 

Effective in modeling sequential 

spatial data 

Graph Neural Networks 

(GNNs) 

Social network analysis, 

infrastructure modeling 

Network topology, relational 

spatial data 

Captures spatial and topological 

relationships 

GIS (Geographic Information 

Systems) 

Mapping, spatial analysis, proximity 

evaluation 

Vector/raster spatial datasets Powerful in visualization and 

spatial querying 

Remote Sensing (RS) Land cover change, urban sprawl, 

resource mapping 

Multispectral and hyperspectral 

imagery 

Long-term Earth observation and 

monitoring 
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Spatial Databases Data management, spatial indexing, 
spatial joins 

Geospatial records with 
location attributes 

Enables efficient spatial querying 
and storage 

Big Data & HPC Platforms Large-scale mobility analysis, real-

time processing 

Massive geolocation/social 

media datasets 

Scalable for complex and high-

volume computation 

 

4. DOMAINS OF APPLICATION IN HUMAN GEOGRAPHY 

The emergence of geospatial artificial intelligence (GeoAI) has immensely magnified analytical power in human geography 

as it allows automated, scalable, and dynamic spatial analysis. It is used in a wide range of important fields, from urban 

planning and population mobility to public health, and environmental justice. GeoAI has already begun fundamentally 

reshaping the way we think about geographic inquiry here in the 21st century, which is evident in the following sections 

that identify significant contributions by GeoAI to other fields. 

4.1 Urban Planning and Land Use 

One of the most prominent domains for GeoAI applications has been Urban planning. Satellite imagery could provide 

much information for urban land-use classification and monitoring of city growth, and deep learning models, particularly 

convolutional neural networks (CNNs), have often been applied in these researches. For example, [25] employed CNNs 

with high-resolution Landsat such as Sentinel-2 imagery to identify urban expansion changes, and it attracted higher 

accuracy compared to classification techniques. Additionally, this information has been used with spatial-temporal models 

to predict future urban sprawl, enabling planners to evaluate infrastructure needs and maximize land use [26]. The 

integration of AI with GIS systems has also opened up for interactive planning dashboards so that policy makers can test 

zoning, transportation planning and green space distribution scenarios. 

4.2 Population Mobility and Migration 

Insights on human mobility behavior are pivotal reconstructions for infrastructure construction, transport planning, and 

disaster preparedness. GeoAI tools have facilitated more spatially refined and timely flow analysis based on mobile GPS 

data, transport card data, and geotagged social media (Khalil et al. 2023). developing a deep learning framework to generate 

daily mobility patterns of megacities at [27], contributing to better traffic management and emergency evacuation 

planning. Another example [28] used recurrent neural networks (RNNs) to predict inter-city migration from historical 

population data and location-based service (LBS) activity, allowing for improved accuracy of migration predictions over 

time. This is critical for real-time analysis applications in smart cities. 

4.3 Social Network and Spatial Behavior Analysis 

[44] Spatial social network analysis GeoAI allows for a deeper understanding of individual and group activity and 

interaction in space. GIS data combined with graph neural networks (GNNs) allow scholars to examine social cohesion, 

urban segregation, and the spatial diffusion of behaviors. We [29] used GNNs to model spatially embedded social networks 

in urban neighbourhoods, and discovered communities of social interaction, which showed close alignment with patterns 

in the demographics and infrastructure. Connecting all of this to the real world allows for implementation in urban design, 

community outreach programs, and policies towards social equity. 

4.4 Health Geography and Epidemiology 

[44] Spatial social network analysis GeoAI allows for a deeper understanding of individual and group activity and 

interaction in space. GIS data combined with graph neural networks (GNNs) allow scholars to examine social cohesion, 

urban segregation, and the spatial diffusion of behaviors. We [29] used GNNs to model spatially embedded social networks 

in urban neighbourhoods, and discovered communities of social interaction, which showed close alignment with patterns 

in the demographics and infrastructure. Connecting all of this to the real world allows for implementation in urban design, 

community outreach programs, and policies towards social equity. 

4.5 Environmental Justice and Spatial Inequality 

GeoAI helps identify and address spatial inequalities associated with environmental hazards, resource distribution and 

socio-economic status. By analyzing satellite imagery and socio-demographic data, AI models can identify inequities in 

access to green space, exposure to air pollution or susceptibility to climate risks. To illustrate, AI-integrated spatial analysis 

[32] was leveraged to analyze mapping with respect to urban environmental injustice, uncovering patterns of 

disproportionate exposure among marginalized communities. GeoAI also makes it possible to create spatial equity indices 

that allow decision makers to create informed policies that target at-risk communities. AI-enabled crowd-sourced mapping 

has also enhanced underserved areas in the Global South [33]. Thus, GeoAI has become a disruptive revolutionary in 

human geography, unlocking unprecedented potential for spatial insight and foresight. The next section will touch on the 

limitations and ethical considerations surrounding these technological advancements to provide a broader perspective on 

the opportunities and pitfalls of GeoAI. Table III summarizes the dominions, AI methodologies, data sources and their 
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impacts of GeoAI in human geography therefore serves as a synthesis of GeoAI and fills the gap in human geography. 

Data-driven insights are enriched by GeoAI over the many elements of human life and spatial organization. 

TABLE III. SUMMARY OF GEOAI APPLICATIONS ACROSS HUMAN GEOGRAPHY DOMAINS. 

Domain AI Techniques Used Data Types Used Key Impact 

Urban Planning and Land 

Use 

CNN, ML classification, 

DL 

Satellite imagery (Sentinel, Landsat), GIS 

layers 

Accurate urban mapping, future land 

use prediction 

Population Mobility and 

Migration 

RNN (LSTM), clustering, 

DL 

GPS data, LBS data, mobile phone records, 

social media 

Real-time mobility modeling, 

migration forecasting 

Social Network and Spatial 

Behavior 

GNN, network analysis, 

GIS 

Social graphs, spatial interaction data, 

demographic layers 

Revealed urban social patterns, 

informed urban design 

Health Geography and 

Epidemiology 

Risk modeling, CNN, 

mobility AI 

Mobility data, environmental sensors, 

demographic indicators 

Tracked disease spread, assessed 

healthcare accessibility 

Environmental Justice & 

Inequality 

AI-based spatial analysis, 

DL, GIS 

Remote sensing, census data, 

environmental exposure layers 

Identified spatial inequalities, 

supported policy decisions 

 

5. CHALLENGES AND LIMITATIONS 

In spite of the potential benefits of Geospatial Artificial Intelligence (GeoAI) to human geography, several challenges still 

prevent its wider use and its effective use. These challenges cover everything from data-related issues through to 

computational hurdles, ethical level concerns, and the interpretability of AI models. Here the limitations are highlighted 

to offer a comprehensive perspective on the current status of GeoAI integration. 

1. Spatial Data Bias and Noise: A primary challenge in GeoAI applications is the presence of bias and noise in spatial 

datasets. Geospatial data from mobile phones can be used to extract useful information, but mobile phones are not 

equally owned across the population, introducing potential biases in the data [32]; geospatial data pulled from social 

media can also misrepresent reality given that lower-income or isolated populations may lack access to social media 

[33] and volunteered geographic information [34] suggested that these kinds of data only becomes available if a 

population has the means to involve themselves. Middle classification zones are overrepresented in deals, while rural 

areas often do not have enough data points. Spatial noise can be introduced via sensor errors, GPS drift, or disparate 

data formats, which can reduce the ability of AI models to make reliable predictions [35]. These biases may cause 

incorrect decision making in domains like disaster management, health resource assignment, or social equality 

explorations. 

2. No Ground Truth and Labelled Data: Most AI models especially supervised learning models depend on accurate 

ground truth data for training and validation purposes. In geospatial contexts, though, obtaining labeled datasets at fine 

spatial and temporal resolutions is typically hard or impossible [36]. This is particularly pronounced in the Global South, 

where up-to-date census information, combined with maps of urban spaces or mobility records, may not even exist. 

Improper or partial labeling results in poor generalization of the model and low trust in GeoAI systems. Standardized, 

openly accessible ground truth data still lacks and this has been touted as one barrier for reproduction of practical and 

scalable applications in this area. 

3. Computational Complexity and Infrastructure Demands: GeoAI methods especially deep learning models like CNNs, 

RNNs, GNNs demand considerable computational power, particularly when dealing with massive spatial-temporal 

datasets, which involve high costs for the algorithms' training and inference processes. Tiling high-resolution satellite 

images, processing LiDAR point clouds, or using dynamic mobility datasets requires high-performance computing 

(HPC) environments, GPU acceleration, and efficient data management protocols [16]. For researchers and 

organizations who lack access to such infrastructure, the computational complexity is a bottleneck. Moreover, the 

storage and preprocessing of all heterogeneous geospatial data results in increased system overhead and 

implementation time. 

4. Ethical Concerns: Privacy, Surveillance and Data Misuse: Ethical issues have been increasingly discussed in GeoAI 

research, especially privacy and surveillance problems. When combined with personal information from mobile phones 

or social platforms, geospatial data can enable intrusive profiling, tracking of user location, and prediction of user 

behaviour all without the informed consent of users [26]. There are also concerns surrounding the potential abuse of 

a surveillance system by ehierarchical regimes, or by powerful monied interests. There are no clear ethical guidelines 

for deploying location-based AI models in practice, creating issues with data ownership, consent and transparency. In 

addition, biased data can contribute to spatial injustice because they maintain systemic inequalities in service provision 

and urban planning [17]. 

5. Explainability and Interpretability of AI Models: Although GeoAI systems can provide high predictive accuracy, they 

often lack transparency. The majority of deep learning model architectures are described as "black boxes," which 

means that it is very complicated to know how to make spatial decisions and why certain regions are tagged as high-
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risk or underserved [18]. Such opacity limits their applicability to the domains of policymaking and public-sector 

planning, where explainability is integral to building trust with stakeholders. Explainable artificial intelligence (XAI) 

techniques, including SHAP and LIME, have been incorporated by some researchers into GeoAI workflows to explain 

model decisions, but these efforts are still in the developmental realm of geospatial applications [19]. 

To summarize the notable multiplicative challenges exists in the integration of GeoAI into human geography, we present 

here in Figure 2 a conceptual flowchart with five key issues: data bias and noise, lack of ground truth, computational 

demands, ethical concerns and explainability issue. These challenges affect the overall modeling accuracy of GeoAI 

systems and directly influence trust in AI-assisted spatial decision-making. The diagram serves as a conceptual model for 

understanding the interplay between technical and ethical limitations in limiting the effectiveness and adoption of GeoAI 

approaches. 

 
Fig. 2. Key Challenges in the Integration of GeoAI into Human Geography Applications 

 

6. EMERGING TRENDS AND FUTURE DIRECTIONS 

With the rapid development of Geospatial Artificial Intelligence (GeoAI), we will continue to see an unprecedented 

application of GeoAI in human geography by integrating real-time data streams with human-centered AI designs and 

intelligent infrastructure. Here are a number of transformative trends and trajectories of noteworthy interest that we foresee 

will shape spatial analysis, and with-it urban governance and equity-driven geographic decision-making, in the years to 

come. 

As a part of 5G-enabled services, Real-time GeoAI means that AI models generating can be processed and analyzed with 

geospatial data on the go and most importantly at real-time in a dynamic environment. IoT refers to such systems by 

integrating sensor networks, mobile GPS, and video surveillance, and facilitates HD mapping and highways of human 

mobility, environmental changes, and infrastructure performance in real-time [11]. In the field of emergency response, for 

instance, real-time GeoAI has been applied to identify flash floods, crowd movements, and evacuation pathways. 

Accordingly, the integration of streaming data and edge computing is a key requirement in order to bring about these 

capabilities, specifically in smart city applications where spatial events are highly dynamic with respect to time [21]. 

A new frontier is emerging in the application of GeoAI to urban planning and simulation: GeoAI-driven digital twins. AI-

powered spatial data can be applied to these models so cities can build simulations for various socio-spatial situations, 

from traffic management, to energy deployment [13]. GeoAI in smart cities: Processes raw data coming from IoT devices, 

environmental sensors, and autonomous systems to understand the real-world, and enabling prediction of events, 

automation and improved governance. Cities such as Singapore and Dubai have piloted projects using AI-assisted 

geospatial data as their digital twins to optimize a range of services and inform infrastructure development [14]. 

In the wake of rising calls to make the algorithms running AI transparent and accountable, scholars are finding common 

ground in Explainable Spatial AI (XGeoAI), which seeks to decode and visualize how geospatial models decide. Methods 

like SHAP (Shapley Additive Explanations), LIME (Local Interpretable Model-agnostic Explanations), and saliency maps 

are being adapted for spatial datasets [15] in order to increase transparency of the models. XGeoAI is especially crucial in 

the fields of urban governance and public health, where decisions need to be data-driven as well as justifiable. Next steps 

are likely to include making XAI work in a spatial setting, helping policy-makers to audit model behavior for potential 

algorithmic bias [16]. 

The integration of GeoAI with Internet of Things (IoT) devices, 5G networks, and blockchain technologies will create 

well-connected, secure, and responsive spatial ecosystems. IoT devices stream geospatial data continuously over vehicles, 

infrastructure, and personal devices. Even at scale, thanks to the low latency and high bandwidth that 5G offers, real-time 

GeoAI applications, including those for autonomous navigation, crowd management, and disaster monitoring, can now be 
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realized [17]. Blockchain can provide secure and transparent handling of location data, improving data provenance and 

privacy protection in geospatial applications [18]. These combinations represent the emergence of decentralized, but smart 

spatial systems. 

As the field of GeoAI evolves, future trends will align with human-centered design practices, focusing on equitable, 

inclusive, and community (co-)production of outcome-based spatial decisions. Human-centered GeoAI: participatory 

mapping, co-designed data platforms, localized AI models respecting socio-cultural context. This strategy responds to 

ongoing criticisms of spatial data colonialism and enables the use of GeoAI for good within underrepresented groups [19]. 

Moreover, the importance of fairness in spatial AI outputs has also emerged as an important part of research with 

frameworks developed to audit spatial bias, improve transparency and ensure algorithmic accountability for geography and 

space-based choices [10]. These emerging trends collectively show that GeoAI is increasingly more technically 

sophisticated as well as increasingly responsive to social needs. The future of GeoAI involves connecting real-time 

analytics to human values providing not just the tools. To effectively synthesize the GeoAI trajectory, Table IV compares 

future directions and trends, technologies, and human geographical impacts of GeoAI. These trends are indicative of a 

shift toward real-time responsiveness, ethical modeling, and deeper integration of AI with urban systems and societal 

needs. 

TABLE IV. EMERGING TRENDS AND FUTURE DIRECTIONS OF GEOAI IN HUMAN GEOGRAPHY 

Trend / Direction Key Technologies Involved Potential Impact in Human Geography 

Real-Time Geospatial AI Edge computing, mobile sensors, AI 
pipelines 

Enables real-time mobility tracking, emergency response, 
dynamic planning 

Integration with Digital Twins & 

Smart Cities 

IoT, GIS, simulation models, AI Supports predictive urban modeling, infrastructure 

optimization 

Explainable Spatial AI (XGeoAI) SHAP, LIME, interpretable ML/DL Enhances transparency, trust, and accountability in spatial 
decisions 

Integration with IoT, 5G, and 

Blockchain 

IoT devices, 5G networks, distributed 

ledgers 

Secures geospatial data flows; improves latency and real-time 

analytics 

Human-Centered GeoAI Participatory mapping, equity 
frameworks 

Promotes inclusive and ethical spatial decision-making 

 

7. CONCLUSION 

This literature review has explored the wide evolution of Geospatial Artificial Intelligence (GeoAI) in human geography 

and spatial networks. GeoAI has synergized the latest AI approaches including machine learning, deep learning and graph 

neural networks with geospatial technology systems such as GIS, remote sensing and spatial databases, facilitating the 

development of more dynamic, predictive and scalable models for understanding complex human-environment 

interactions. It provided an in-depth examination of four key application domains, namely urban planning, population 

mobility, social network analysis, health geography, and environmental justice illustrating GeoAI’s capacity to transform 

theoretical and practical aspects of spatial analysis. Despite the promising potential of GeoAI, several challenges exist for 

widespread adoption. These include spatial data bias, lack of ground truth, computational demands, and increasing ethical 

issues relating to privacy, fairness, and transparency. Another aspect is the interpretable nature of AI models which is still 

an important challenge especially with regards to public-sector applications where decisions need to be explainable and 

justifiable. Understanding these limitations is a prerequisite for building robust, responsible, and equitable all-

encompassing GeoAI systems. These are exciting times for geospatial technology and, indeed, its future is fusing with the 

very fabric of many modern technologies that humanity needs to survive in this world. Solving these technical and societal 

challenges will depend heavily on interdisciplinary collaboration, mixing geography, computer science, data ethics, and 

urban studies. Andrea and collaborators argue for a more human-centered GeoAI that serves as the pathway to an 

understanding of issues such as equity and transparency via participatory design. Finally, GeoAI is a new paradigm within 

human geography, and offers new opportunities with regard to evolution within direct evidence and innovative evidence. 

Future work in this area must create more of the scalable, invariably ethical and explainable methods necessary to use 

geographic knowledge to inform decision-making in the real world that responsibly advances our understanding of 

geography. 
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