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ABSTRACT

This We present a concise analytical write-up focusing on green Al architectures and sustainable resource
use in circular economies. Two chenges in the transition to a circular economy are insufficient resource
efficiency and sustainability assessment of decisions affecting resource use. Al-enabled solutions can
contribute positively but often with energy and emissions costs that undermine their ecological value.
The analytical lens examines green Al architectures that avoid, minimize or counterbalance adverse
energy, data, and life-cycle sustainability impacts.

The idea behind the circular economy is to use as few resources as possible and keep and recover as
many materials as possible in socio-technical systems. It works by using closed-loop systems, product
designs that make it easy to take things apart, and service models that make products last longer. The
end goal is to separate economic growth from the use and depletion of natural resources. Encouraging
the effective use of resources makes it easier to put circular economy ideas into action and speeds up the
shift to fully circular production systems. The main goal of resource circularity is to close the material
loop by efficiently getting valuable resources back through processes like extraction, collection,
recovery, recycling, reproduction, and remanufacturing. Even though Al doesn't directly help, its impact
on these processes is both big and life-changing.

1. INTRODUCTION

Currently, the discourse regarding sustainability-driven artificial intelligence and its connection to the circular economy
predominantly exists within a conceptual and theoretical context. Even though this is still a new idea, using Al in circular
economy projects has a lot of potential for future growth and new ideas. The move toward a circular economy model requires
complicated, systemic changes that are meant to greatly improve how well resources are used[2]. These changes include a
wide range of practices that affect how materials are used and how energy and water are used in all areas. This change needs
more than just cutting down on consumption; it also needs finding new ways to do things and coming up with new ideas that
can take the place of old systems[3].

These kinds of changes put a lot of stress on Al-enabled information and management systems. They require changes to
current industrial and organizational practices to fit with new economic and environmental models. Numerous case studies
provide empirical evidence of the vital and transformative role of green Al in enhancing material and energy efficiency in
industries directly associated with circular economy principles[4]. These studies show real progress, such as Al-enhanced
recovery and sorting of construction materials that encourage reuse and cut down on waste, the use of smart manufacturing
systems that improve production forecasts and operational performance while cutting down on lifecycle waste, and the
creation of advanced strategies that make it easier to reuse water and raw materials across supply chains. These applications
demonstrate how technology-driven strategies can be effectively utilized to achieve sustainability outcomes aligned with the
objectives of the circular economy[5][6].

1.1. Research Problem and Gap

While scholarly and professional interest in sustainable artificial intelligence has been progressively growing, current
research predominantly focuses on discrete elements, such as improving algorithmic efficiency, minimizing computational
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energy consumption, or tackling ethical dilemmas. There are only a few studies that have tried to create a comprehensive
analytical framework that links green Al architectures to measurable outcomes of the circular economy, such as resource
circularity, lifecycle performance, and the connections between data and energy use. Moreover, sustainability indicators are
frequently regarded as ancillary factors rather than being integrated into the core design of Al systems.

This disjointed view makes it hard to fully understand how certain architectural setups, like energy-efficient models, data-
efficient learning paradigms, and designs that focus on the whole lifecycle, can all work together to make materials and
resources more circular. The primary research problem examined in this paper pertains to the absence of a cohesive analytical
framework that evaluates how various green Al architectures promote sustainable resource utilization within circular
economic systems. To address this gap, the study suggests a systematic mapping of essential architectural patterns, assesses
their inherent trade-offs, and recognizes their potential synergies with the principles of the circular economy.

1.2 Research Methodology and Scope

This study employs a conceptual-analytical review methodology that amalgamates a critical analysis of current literature
with thematic synthesis to investigate how the development of Green Al architectures improves resource efficiency and
sustainability in circular economy (CE) systems. The methodological design comprises three interrelated stages:
Conceptual Mapping: figuring out what the main types of Green Al are and putting them into groups. These types are energy-
aware, data-efficient, lifecycle-integrated, and explainable architectures.

Comparative Evaluation: examining the trade-offs, interconnections, and sustainability consequences of these paradigms in
the context of Circular Economy principles, including resource circularity, lifecycle optimization, and waste minimization.
Integrative Synthesis: developing a cohesive analytical framework that reveals the synergies between Al architectural design
and the resource loops intrinsic to circular economic models.

The study predominantly analyzes peer-reviewed publications and technical reports published from 2021 to 2025,
emphasizing recent advancements in energy-efficient machine learning, federated and distributed learning systems, Al-
driven lifecycle assessment, and transparent circular supply chain management. Instead of concentrating on empirical
experimentation, the review methodically examines theoretical foundations, architectural advancements, and their extensive
ramifications for sustainability.

This methodological framework seeks to offer a comprehensive insight into how design choices in Al architectures can
promote or obstruct the creation of circular resource flows. This establishes a foundation for subsequent frameworks that
implement Green Al within the framework of circular economies, as depicted in Figure 1
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Fig. 1. Conceptual integration framework linking Green Al architectures with Circular Economy principles

Figure 1 shows how the proposed conceptual framework shows how Green Al architectures interact with important aspects
of resource efficiency to create real results in the circular economy. This framework serves as a fundamental reference for
the ensuing analytical discourse, directing the interpretation and integration of subsequent findings.
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2. THEORETICAL FOUNDATIONS OF GREEN Al AND CIRCULAR ECONOMY

Green Al is a group of strategies and practices that aim to reduce the negative effects of Al systems on the environment.
The main goal is to make Al models more energy- and data-efficient while taking into account the entire process of
development, deployment, and operation. The circular economy is a promising way to make things without harming the
environment even more, as the climate crisis and digital expansion put more pressure on global resources. Because
extracting materials and making things are two of the most important ecological limits, sustainable progress needs not only
better circularity but also more efficiency in non-circular material flows. Despite the increasing popularity of the idea of
circularity, itis still not fully understood and is still not fully formed. In this context, Al can greatly improve how efficiently
resources are used, making it a key part of circularity [6]. So, it's both timely and necessary to pay close attention to the
link between Green Al and material circularity.

The main idea behind a circular economy is to keep resources and materials moving around all the time. Circular models,
on the other hand, try to get rid of waste by recovering, regenerating, and reintegrating materials into the value chain. This
keeps resource loops going. Resource circularity refers to the continuous recirculation of materials, whereas material or
product circularity pertains specifically to the persistent flow of physical goods within economic systems. In this context,
the European Union taxonomy provides definitions and objectives for environmentally sustainable activities, while new
paradigms focus on separating economic growth from resource use by improving ways to reuse and recover resources [5].
Different architectural styles that help with sustainability can be grouped into three main areas of resource efficiency:
energy, data, and product lifecycle. Every category is important for reaching circularity and encouraging sustainable
technological progress [7].

Machine learning that focuses on sustainability stresses making model architectures that use less computing power and
energy. This is an important step in separating Al innovation from increasing resource use. To balance system performance
with environmental cost, research, training, and deployment all focus on low-energy setups. Designers can use hardware-
software co-optimization strategies by looking at energy profiles during both the training and inference phases. This lets
them build sustainability constraints directly into model development. A lot of different optimization methods have been
suggested to make models more energy efficient, including pruning, quantization, and lightweight architecture design [8].

3. DATA-EFFICIENT LEARNING AND FEDERATED APPROACHES

Sustainable Al promotes the minimization of data collection and storage, aligned with circularity objectives. Continual
learning allows further adaptation without retraining on existing data. Privacy-preserving federated learning addresses
confidentiality concerns by keeping data on-site, and transferability generates reasonable models across different
environments with minimal new data [9].

Lifecycle assessment and explainability

The incorporation of life-cycle assessment (LCA) with model training assists in measuring, visualizing, and optimizing Al
system sustainability, supporting the transition to circularity. Sustainability-oriented Al requires a clear explanation of how
optimization contributes to sustainability, enabling informed decision-making at each iteration and fostering accountability,
transparency, and trustworthiness [10].

3. LEnergy-aware model design

Two approaches contribute to delivery efficiency in hardware-level design: low-energy architecture and hardware-software
co-design. Enabling core energy-efficient architectures—such as intermittent, voltage-scaling, and dynamic-
reconfiguration circuits—for long inference time within a given energy budget, model choices such as compact model
over-provisioning or Al accelerators support energy-efficient inferences [8]. Supporting an understanding of
training/inference energy profiles facilitate the establishment of explicit optimization objectives. Such awareness permits
dedicated architectural adaptations and selection of training objectives that address energy consumption [7].
Interoperability at the hardware-software boundary advances effective channel utilization during Al workloads and
supports frameworks for energy-management techniques balancing accuracy and energy consumption. Energy-efficiency
trade-offs between training techniques, e.g. pruning, quantization, and cluster learning, for temporal-coherence or sparsity
already feature in end-to-end frameworks but are not yet connected to actual energy-consumption estimation.

3. 2 Data-efficient learning and federated approaches

In artificial intelligence (Al), the need for large datasets and effective, condition-agnostic model updates makes data
efficiency a major objective. In the real world, there are often only a few samples available, which leads to the use of data
minimization methods like semi-supervised learning. Al systems also get data on a regular basis, which means they can
keep learning without being held back by what they already know. The study of data-efficient Al is progressing rapidly,
highlighting its interaction with alternative architectural paradigms [11].
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Federated learning is especially important because it tries to improve models while keeping data private, or, more
generally, not knowing anything about the dataset. Interest in this area has grown a lot, especially when it comes to apps
for mobile phones. Transferring data usually needs a lot of bandwidth, and in many cases, it's even impossible to transfer
a model update. So, federated approaches not only help protect privacy, but they also cut down on data exchanges.
Transferable updates take these ideas even further by letting people use knowledge in ways that are harmful to others at
work or on their devices [12].

Substantial effort has concentrated on federated and continual learning frameworks, which often accommodate transfer
learning. The move towards decentralised data designs responds to the complexity of modern datasets, especially at large
scales. Al deployment grammars can now encompass multi-context systems that model information at different levels or
values across different locations [13].

Specific materials circularity outcomes, including the invisible configuration, traceability of components along supply
chains, order fulfilment across geographic distributions, and patient recruitment, lend themselves to federated and ongoing
updates. Research already exists that optimises distribution-scale deliveries across countries while transferring knowledge
from one customer base to another, an approach that also contributes to the resource allotment of brands and logistics.

3. 3 Lifecycle assessment and explainability

Lifecycle assessment (LCA) should be integrated into model development to ensure that resource consumption and
environmental impacts beyond mere task performance are considered. An LCA quantifies the overall resource use and
emissions associated with the creation and operation of a model and helps to identify the best trade-offs, potentially leading
to an improved sustainability profile of all products and services that rely on the model. Explainability requirements should
also incorporate a sustainable-development aspect to capture whether and how the use of the model contributes to the
longer-term sustainability of individual products/services and society at large. Explanations of model predictions should
provide insights into how and why a model influences the consumption of critical resources, energy use, waste generation,
and pollutant emissions; such insights, in turn, enable improved decision-making throughout product/service lifecycles
[14].

Al for improving resource efficiency in circular-economy concepts and processes is increasingly prominent, with growing
evidence supporting the emerging discourse. A collection of green-Al architectural patterns promotes this application
domain by improving resource sustainability, supporting circular-economy principles like closing loops, lowering overall
demand, and speeding up service delivery for products and services. Still, it's important to carefully think about the trade-
offs between performance, energy use, data use, and environmental impact. Evaluating and tackling these issues earlier in
the architecture-design process—preferably during the model-design phase—will facilitate the pursuit of circular-economy
resource-efficiency goals in conjunction with conventional performance targets, thereby enhancing sustainability outcomes
[4].

Adding Al to material-recovery processes has a big and positive effect on getting back a lot of materials, like plastics and
metals. On the other hand, Al helps close loops and reduce resource use and the environmental effects that come with it
by making it possible to track and improve the management of circular supply chains. Al-enabled smart-manufacturing
processes and production-scheduling methods that accurately forecast product demand are increasingly demonstrating their
potential for circular-economy applications especially when efficiently allocating resources and limiting undesirable
impacts such as production waste [4]. As shown in figure 2.
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Fig. 2. Core architectural components and sustainability interactions in Green Al systems

The interconnections among core architectural components in Green Al systems are visualized in Figure 2. The figure
highlights how data processing, algorithm design, resource management, and sustainability interactions collectively shape
an environmentally responsible Al framework.
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4. GREEN Al IN RESOURCE CIRCULARITY: CASE STUDIES

The potential of artificial intelligence (Al) as a supporting technology to achieve the transition towards a circular economy
has gained much attention recently [5]. Circular economy principles aim to restore and regenerate products, components,
and materials back to the productive economy and preserve their value for as long as possible [15]. Therefore, the analysis
highlights three case studies of green Al architectures explicitly focusing on resource efficiency, in line with the objectives
of the international consensus on the circular economy.

Al-enabled material recovery and sorting facilitate high electro-optical sorting for construction and demolition waste,
which helps to increase the recovery rate significantly from the current 5% to better than 50% and improves the energy
efficiency. Al systems for production scheduling based on machine-learning-enabled demand forecasting support a smart
manufacturing initiative to reduce excess production and improve schedule accuracy. However, a trade-off between
forecast accuracy and model energy consumption has to be dealt with to keep the over energy-kilogram saved ratio above
0.25 for continuous energy management over seven days. Al-enabled traceability and transparency for products and
materials within circular supply chains support logistics operations by optimizing inventory and routing. Simulation results
indicate that the inventory optimization has a capacity of 40% space reduction and that the optimized routing is
approximately three times shorter than the baseline solution; performance within the large-scale scenario remains similar.

TABLE I. COMPARATIVE ANALYSIS OF GREEN Al ARCHITECTURAL APPROACHES AND THEIR CONTRIBUTIONS TO CIRCULAR
ECONOMY PRINCIPLES

Architectural Core Principles Strengths Limitations / Trade- | Contribution to | Key
Approach offs Circular Economy | References
(CE)
Energy-aware Focuses on minimizing | Reduces carbon | May sacrifice | Promotes energy | [7], [8]
model design power consumption | footprint; enhances | accuracy or | circularity by
through efficient | computational performance; requires | decoupling Al growth
architectures,  hardware— | efficiency; compatible | costly hardware | from energy use.
software co-design, and | with  existing Al | adaptation.
low-energy inference. pipelines.
Data-efficient Employs semi-supervised, | Reduces data | Potential lossof model | Supports information | [9], [12],
learning continual, and federated | redundancy; enhances | generalization; high | circularity by | [13]
learning to minimize data | privacy; lowers | initial  coordination | optimizing data reuse
collection and storage. bandwidth and storage | cost. and minimizing waste.
demands.
Federated and | Enables distributed training | Increases user privacy; | Energy costs per node | Facilitates distributed | [12], [13]
decentralized without centralizing data, | reduces data transfer; | can be high; | resource optimization
learning improving data sovereignty | supports localized | synchronization and localized circular
and local resource use. optimization. overhead. processes.
Lifecycle Embeds LCA into Al | Offers holistic | Data-intensive; lacks | Enables closed-loop | [10], [14]
assessment (LCA)- | design and evaluation to | sustainability insight; | standardized metrics; | evaluation and
integrated models measure environmental | ensures  transparency | complex to apply | environmentally
impact over the model’s | and accountability. universally. responsible Al lifecycle
lifecycle. management.
Explainable and | Enhances interpretability of | Improves trust, | Complexity in | Strengthens ethical | [14], [15],
accountable Al | sustainability impacts and | transparency, and | modeling; may slow | circularity by linking | [21]
(XAl decision processes. decision quality; aligns | deployment. accountability with
Al with ethical CE resource governance.
values.
Smart Integrates Al for predictive | Reduces waste; | Energy-intensive Reinforces material | [16], [17],
manufacturing & | production and logistics | improves material flow | training; requires | circularity by | [18]
demand optimization. efficiency; supports | precise demand data. optimizing  production
forecasting models agile circular supply and reducing surplus.
chains.
Al-enabled Uses Al to track materials | Increases visibility; | Implementation costs; | Promotes loop closure | [4], [5]
traceability and | and products through the | supports reuse and | interoperability and resource recovery
supply-chain entire lifecycle. recycling; reduces | challenges. efficiency.
transparency inefficiencies.
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Fig. 3. Al-enabled circular resource flow integrating material, data, and energy loops

Figure 3 illustrates the Al-enabled circular resource flow that integrates material, data, and energy loops. The central “Green
Al Core Engine” serves as the operational nexus driving sustainable resource optimization across all loops, forming the

conceptual foundation for the subsequent case studies.

4.1 Material recovery and optimization

Most materials used by society today are non-renewable resources and their demand is expected to almost double by 2060
[16]. Implementing a circular economy based on reduction, re-use, repair, and recycling can mitigate looming supply
shortages by extending the use of materials and recirculating output flows [5]. The global healthcare sector generates
considerable amounts of waste—up to 25 percent of costs could be eliminated by removing it altogether—yet little attention
is paid to waste eviation. Robotic disassembly, intelligent material sorting, and machine-learning-guided visual control

play an important role in bolstering material recovery.

To support intelligent disassembly, automated and semi-automated sorting, and real-time visual inspection for disassembly
and sorting, novel Embedded Visions Systems (EVS) are developed and incorporated into Flexible Robotic Cells (FRC)
provided with TI-DNN compliant data sets. The formulation of a flexible robotic-based disassembly system is presented
and its study framing is set, outlining the process’s main requirements. The implementation of a hierarchical decision-level
strategy combined with a Set-Input-Output-Place Petri Net graphical representation reflects the desired global functionality
of the system and helps classify both hardware and software building blocks, also indicating their interconnections.

4.2 Smart manufacturing and demand forecasting

Smart manufacturing and demand forecasting present promising opportunities for improving resource efficiency in circular
economies through Al-enabled systems. The ever-increasing demand for customization and reduced lead times has made
it critical for manufacturing companies to fine-tune their production and inventory planning. Statistical-forecasting methods
are often unable to cope with the short life cycles of Industrial Internet of Things products, while deep-learning models
have the potential to extract value from historical data by integrating heterogeneous time series at multiple time scales.
However, deep-learning methods typical have high associated energy costs, with deep-learning models consuming 8.5

times more energy for a 22% higher operational performance compared to traditional macro-models [17].

In materials recovery facilities and waste-to-resource scenarios, machine-learning-based production scheduling can bring
substantial improvements to waste reduction and the circular economy. Scheduling decisions require a plant-wide view to
align with demand while reducing work-in-process inventory waste. Hybrid modeling can provide greater accuracy for
short-term scheduling; illustrate the trade-offs between energy, additional accuracy, and model complexity; and enable
diverse modeling strategies within a single structure with fewer state variables. Such models can then be combined with

reinforcement learning and an accelerator algorithm to improve solution quality and convergence speed. [18]



AlSajri, Vol. (2025), 2025, pp 58-67

4.3 Circular supply chains and logistics optimization

The increasing virtualization of supply chain systems provides new opportunities for circular supply chains, enabling
process optimization and end-of-life traceability, thus facilitating reverse logistics and location-based reuse. To this end,
Al plays a crucial role by improving demand forecasting accuracy, assessing product lifetime for replacement and reuse,
and designing environment friendly and sustainable product alternatives [5].

It is very important to use the right protocols at each supply chain node to keep the quality of the products during location-
based distribution and product reuse. Due to outside forces, rules, and government authorities, circular supply chain
operations are very uncertain. For this reason, a supply chain network should be built with the goal of gradually lowering
the costs of the circular economy, degradation, and replenishment. Al algorithms can make these kinds of complicated
systems much more resistant to unexpected problems.

5. TRADE-OFFS AND GOVERNANCE

Green Al represents a transformative shift towards more environmentally friendly principles and practices in artificial
intelligence (Al) [15]. In urban cultures, material cycling is important for keeping healthy biophysical stocks and flows of
metals, industrial materials, nutrients, and organic matter as a good replacement. The literature acknowledges green Al
solutions that have both direct and indirect impacts on circularity objectives. The gradual establishment of life-cycle
assessment (LCA) standards for non-functional Al attributes aligns with green Al architectures and design principles,
directing data and energy-efficient circular interventions [8].

Quantifying trade-offs among various, frequently conflicting, circularity objectives facilitates more informed decision-
making. Trade-offs can show, for instance, energy—data recycling, hardware—software co-design, and safety—performance.
Al growth might not be linked to regular punishments, which would encourage open-source, multi-use generative
applications. More horizontal ecosystems have been created, and different goals in supply and demand models lead to
design choices like making accurate forecasting more understandable.

5.1 Environmental cost accounting in Al systems

Acrtificial intelligence (Al) systems have considerable, yet often disregarded, environmental costs manifesting as
greenhouse gas emissions and non-renewable resource consumption. These costs arise at three distinct stages: the design
and development of Al models, the use of trained models in Al applications, and ultimately the provision of Al-related
products and services to end users [15]. Each of these stages generates environmental burdens that are unique to the Al
field. According to Zhao et al. [7] , 70% of total Al operation costs are linked to data processing, storage, and network
transmission, raising critical sustainability concerns about the responsible design of Al systems.

Al-related emissions and resource use can be allocated between internally-used and externally-supplied components. A fair
accounting approach might consider a model as a standard-one-and-zero tool. The hazards of Al designs are often visible
through a knee-shaped curve in operational cost and pollution. Despite the sustainability pressure affecting the whole
economy, the shadowed environmental burdens of Al persist, placing conundrums on academic intellect and enterprises.

5.2 Policy and standardization implications

Until recently, regulatory frameworks only covered certain areas or topics, which led to standards that weren't connected.
A paradigm shift is happening, and the standards set by the International Organizations for Standardization (1SO) and the
International Electrotechnical Commission (IEC) now reflect this. The European Union strategy also lists important things
to do [19].

Interoperability standards are necessary for combining different solutions, but they have to deal with local use and changing
data. The European Strategy pushes for a set of rules that everyone in the world can agree on for interoperable data.
Policies about the data economy must make sure that users own and control their data.

Governance mechanisms are important for digital technology, but they aren't as advanced as the technology itself.
Strategies for data governance have been around for a long time, but they have sped up in the last few years. The European
Strategy lays out a plan for how to govern digital and Al technology [20].

6. EVALUATION FRAMEWORKS AND METRICS

Artificial Intelligence (Al) as it is used today needs a lot of energy, data, and other resources. We need ways to keep an
eye on how these resources are being used and what effect they have on the environment. Putting sustainability metrics
like energy, data, and lifecycle resource use into Al systems lets designers and modelers go for greener options [8]. Deep
Al benchmarks and thorough audit trails that explain why design choices were made, how they affect usage, and what other
models could be used can help make Al more environmentally friendly [15]. Creating a useful list of benchmark datasets
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for a wider range of application areas can help raise awareness and speed up progress. Reproducibility requirements can
create shared starting points for different datasets.

6.1 Embedded sustainability metrics

By using resource-efficient green architectures to collect sustainability metrics, Al systems can better align with the goals
of a circular economy.

To fully understand resource sustainability, you need to think about energy use, data needs, environmental effects, and
costs at every stage of the process [8]. However, sustainability issues are often seen as extra or even ignored in Al research.
To address this issue, we need a comprehensive approach that can identify general categories for evaluating the
sustainability of architectures, methods, and systems as a whole. Green Al proposals should also include the energy
footprint, data footprint, and lifecycle assessment (LCA) as part of the push to standardize metrics for responsible Al [15].
Traditional metrics look at performance, robustness, and generalization, while a holistic assessment framework combines
these with measures of material intensity and other aspects of sustainability. Researchers can create frameworks that
capture the energy and data needs of Al-based solutions throughout the entire training and deployment lifecycle by creating
sustainability metrics alongside traditional performance metrics. These frameworks can then be linked to sustainability
goals.

6.2. Benchmarking and auditing green Al

Governments, researchers, and industry professionals are prioritizing the enhancement of sustainability in complex
technological systems, particularly artificial intelligence (Al). Because Al is so important for solving many environmental
and sustainability problems [7], it is also strategically important to find and use ways to lower Al's own resource needs.

"Green Al" is an important way to look at Al sustainability. It encourages people to think about how modeling choices and
decisions will affect the environment in the long term and how much energy and data they will use [8]. Circular economies
have become a very effective way to make many different areas more sustainable. So, it's important to look into how green
Al methods and building choices can help circular economies and a more sustainable future. Some of the first specific
questions to think about in this case are: What Al-powered apps help with resource efficiency and make it easier to follow
circularity principles like separating growth from resource extraction and improving material flows? How can green Al
techniques, such as energy-efficient machine learning models, data-efficient learning strategies, and better lifecycle
assessment, help specific applications make better use of their resources? What architectural choices offer both high
performance and a substantial green Al footprint to enhance understanding of trade-offs and facilitate prioritization? Lastly,
which internationally accepted guidelines, frameworks, or metrics measure Al sustainability aspects like energy, data, and
long-term environmental impact while still being able to work with performance?

Answering these questions helps us learn more about how green Al, circular economies, and resource efficiency are related.
This is an important but rarely studied and analyzed topic. A systematic examination of the pertinent literature concerning
the applicability of green Al to the advancement of circular economies, alongside associated architectural alternatives and
guidance, may uncover numerous novel patterns, reveal previously unexamined interactions, and elicit considerable interest
from both industrial and academic communities.

7. BARRIERS, RISKS, AND ETHICAL CONSIDERATIONS

Even though many people think that using green Al architectures is a good idea, it does come with some problems. For
architectural exploration, resources are still needed; models that use less energy can sometimes be useless [15]. Federated
learning usually uses less data and energy overall, but individual federated clients may not always get a lot of data reduction
during their training, which can be expensive [7]. As the number of candidates increases, life cycle analysis becomes more
useful for comparing models. However, creating an accurate and reliable life cycle analysis is still a big challenge. One of
the many things that life cycle analysis needs to be useful with complex models is that it needs to be easy to understand.
Putting green Al architectures into practice can lead to more ethical problems. Equity is a concern because any part of
society that already has limited access to data, data storage, computing power, economic revenue, or other important
resources will lose even more when models need a lot of data or resources. Some types of data-aware model architectures
can make this worry even worse. Transparency is still a problem because it is not as easy to decode life-cycle information
from a green Al-enabled approach as it is from a traditional one. Without easy and open ways to share this information,
accountability can also become unclear [21].

8. FUTURE PROSPECTS AND RESEARCH AGENDA

Emerging technologies herald the prospect of a new industrial revolution, driven by advances in big data and Al [7]. Key
sectors agribusiness, energy, smart cities, materials, and manufacturing embark on an ambitious transition c475bb4fd-06¢8-
4869-9683-bc7cb4bee968ed "Green Deal” or "green product™ aimed at curbing or cutting GHG and environmental
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footprints, increasing resource recovery, and boosting over475bb4fd-06c8-4869-9683-bc7ch4bee968 circularity [5].
Similarly, scientific works supporting "Green AI” strive for a greener world and healthier blue planet through more
sustainable Als. Despite rapid improvements in energy and carbon footprints of computational budgets and storage, Als
successfully reduce inherent emissions and resource consumption for their targeted applications [15].

Moving from Al concerned solely with efficiency of resource-use inputs—mainly energy, data, and biodiversity—to Al
operating on the other sides of “circularity” is worthwhile and timely.

Illustrated blueprints proposed signify a first-and-foremost forward step towards remaining flexibility in each architectural
component design and addition, and diversified space structure explorations. Each blueprint, therefore, neither prescribes
a necessarily move towards yet greener set of ingredients nor confines an exclusive measure of GP. Each element articulates
only one of considerably high possibilities, requires no order, and welcome adherent and integration with emerging
equipment, facilities, and other trends such as Spatial-Audio or 6G. Following five deliverables are considered
progressively optimal; nevertheless, advancing at least three penultimate items largely facilitates consistent evolution of
the entire circularity which remains ascent.

9. CONCLUSION

This thorough and in-depth study shows how important and game-changing Al technologies are for not only improving
resource circularity but also for making progress toward meeting important circular economy goals. The strategic use of
different architectural patterns that are carefully aligned with green Al principles creates many ways for businesses to work
that are specifically designed to make the most of their resources. Also, these new ideas can have a big impact on
sustainability outcomes, which are becoming more important in today's world. The use of Al-enabled material recovery
systems is especially helpful because it greatly improves sorting accuracy and recovery rates, which in turn makes the whole
recycling process much more efficient. These advanced Al systems also improve the accuracy of demand forecasting while
lowering energy use per unit. This has two benefits that help meet both economic and environmental goals. A clear and
thorough understanding of these complex and interrelated relationships can help people make smarter and more strategic
investments in Al technologies. This will help new green Al architectures spread more quickly and widely across many
different industries and sectors. This meaningful use of Al not only makes operations more efficient, but it also puts a lot of
emphasis on building a sustainable future. This method makes sure that resources are used as little as possible and that waste
is handled properly. This strengthens the commitment to a circular economy model that benefits everyone involved in this
effort. Organizations can lead the way in the sustainability movement by recognizing and taking advantage of these
opportunities. This will open the door to new ways of using resources and dealing with waste that could change the way we
do things and make the planet healthier for future generations.
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