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A B S T R A C T  

This We present a concise analytical write-up focusing on green AI architectures and sustainable resource 

use in circular economies. Two chenges in the transition to a circular economy are insufficient resource 

efficiency and sustainability assessment of decisions affecting resource use. AI-enabled solutions can 

contribute positively but often with energy and emissions costs that undermine their ecological value. 

The analytical lens examines green AI architectures that avoid, minimize or counterbalance adverse 

energy, data, and life-cycle sustainability impacts. 

The idea behind the circular economy is to use as few resources as possible and keep and recover as 

many materials as possible in socio-technical systems.  It works by using closed-loop systems, product 

designs that make it easy to take things apart, and service models that make products last longer.  The 

end goal is to separate economic growth from the use and depletion of natural resources.  Encouraging 

the effective use of resources makes it easier to put circular economy ideas into action and speeds up the 

shift to fully circular production systems.  The main goal of resource circularity is to close the material 

loop by efficiently getting valuable resources back through processes like extraction, collection, 

recovery, recycling, reproduction, and remanufacturing.  Even though AI doesn't directly help, its impact 

on these processes is both big and life-changing. 

 

1. INTRODUCTION 

Currently, the discourse regarding sustainability-driven artificial intelligence and its connection to the circular economy 
predominantly exists within a conceptual and theoretical context.  Even though this is still a new idea, using AI in circular 
economy projects has a lot of potential for future growth and new ideas.  The move toward a circular economy model requires 
complicated, systemic changes that are meant to greatly improve how well resources are used[2].  These changes include a 
wide range of practices that affect how materials are used and how energy and water are used in all areas.  This change needs 
more than just cutting down on consumption; it also needs finding new ways to do things and coming up with new ideas that 
can take the place of old systems[3]. 
These kinds of changes put a lot of stress on AI-enabled information and management systems. They require changes to 
current industrial and organizational practices to fit with new economic and environmental models.  Numerous case studies 
provide empirical evidence of the vital and transformative role of green AI in enhancing material and energy efficiency in 
industries directly associated with circular economy principles[4].  These studies show real progress, such as AI-enhanced 
recovery and sorting of construction materials that encourage reuse and cut down on waste, the use of smart manufacturing 
systems that improve production forecasts and operational performance while cutting down on lifecycle waste, and the 
creation of advanced strategies that make it easier to reuse water and raw materials across supply chains.  These applications 
demonstrate how technology-driven strategies can be effectively utilized to achieve sustainability outcomes aligned with the 
objectives of the circular economy[5][6]. 

1.1. Research Problem and Gap 

While scholarly and professional interest in sustainable artificial intelligence has been progressively growing, current 
research predominantly focuses on discrete elements, such as improving algorithmic efficiency, minimizing computational 
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energy consumption, or tackling ethical dilemmas.  There are only a few studies that have tried to create a comprehensive 
analytical framework that links green AI architectures to measurable outcomes of the circular economy, such as resource 
circularity, lifecycle performance, and the connections between data and energy use.  Moreover, sustainability indicators are 
frequently regarded as ancillary factors rather than being integrated into the core design of AI systems. 
This disjointed view makes it hard to fully understand how certain architectural setups, like energy-efficient models, data-
efficient learning paradigms, and designs that focus on the whole lifecycle, can all work together to make materials and 
resources more circular.  The primary research problem examined in this paper pertains to the absence of a cohesive analytical 
framework that evaluates how various green AI architectures promote sustainable resource utilization within circular 
economic systems.  To address this gap, the study suggests a systematic mapping of essential architectural patterns, assesses 
their inherent trade-offs, and recognizes their potential synergies with the principles of the circular economy. 

1.2 Research Methodology and Scope 

This study employs a conceptual-analytical review methodology that amalgamates a critical analysis of current literature 
with thematic synthesis to investigate how the development of Green AI architectures improves resource efficiency and 
sustainability in circular economy (CE) systems.  The methodological design comprises three interrelated stages: 
Conceptual Mapping: figuring out what the main types of Green AI are and putting them into groups. These types are energy-
aware, data-efficient, lifecycle-integrated, and explainable architectures. 
Comparative Evaluation: examining the trade-offs, interconnections, and sustainability consequences of these paradigms in 
the context of Circular Economy principles, including resource circularity, lifecycle optimization, and waste minimization. 
Integrative Synthesis: developing a cohesive analytical framework that reveals the synergies between AI architectural design 
and the resource loops intrinsic to circular economic models. 
The study predominantly analyzes peer-reviewed publications and technical reports published from 2021 to 2025, 
emphasizing recent advancements in energy-efficient machine learning, federated and distributed learning systems, AI-
driven lifecycle assessment, and transparent circular supply chain management.  Instead of concentrating on empirical 
experimentation, the review methodically examines theoretical foundations, architectural advancements, and their extensive 
ramifications for sustainability. 
This methodological framework seeks to offer a comprehensive insight into how design choices in AI architectures can 
promote or obstruct the creation of circular resource flows. This establishes a foundation for subsequent frameworks that 
implement Green AI within the framework of circular economies, as depicted in Figure 1 

 

Fig. 1. Conceptual integration framework linking Green AI architectures with Circular Economy principles 

Figure 1 shows how the proposed conceptual framework shows how Green AI architectures interact with important aspects 

of resource efficiency to create real results in the circular economy.  This framework serves as a fundamental reference for 

the ensuing analytical discourse, directing the interpretation and integration of subsequent findings. 

 

 



 

 

60 AlSajri, Vol. (2025), 2025, pp 58–67 

2. THEORETICAL FOUNDATIONS OF GREEN AI AND CIRCULAR ECONOMY 

Green AI is a group of strategies and practices that aim to reduce the negative effects of AI systems on the environment.  

The main goal is to make AI models more energy- and data-efficient while taking into account the entire process of 

development, deployment, and operation.  The circular economy is a promising way to make things without harming the 

environment even more, as the climate crisis and digital expansion put more pressure on global resources.  Because 

extracting materials and making things are two of the most important ecological limits, sustainable progress needs not only 

better circularity but also more efficiency in non-circular material flows.  Despite the increasing popularity of the idea of 

circularity, it is still not fully understood and is still not fully formed.  In this context, AI can greatly improve how efficiently 

resources are used, making it a key part of circularity [6].  So, it's both timely and necessary to pay close attention to the 

link between Green AI and material circularity. 

 The main idea behind a circular economy is to keep resources and materials moving around all the time.  Circular models, 

on the other hand, try to get rid of waste by recovering, regenerating, and reintegrating materials into the value chain. This 

keeps resource loops going.  Resource circularity refers to the continuous recirculation of materials, whereas material or 

product circularity pertains specifically to the persistent flow of physical goods within economic systems.  In this context, 

the European Union taxonomy provides definitions and objectives for environmentally sustainable activities, while new 

paradigms focus on separating economic growth from resource use by improving ways to reuse and recover resources [5]. 

 Different architectural styles that help with sustainability can be grouped into three main areas of resource efficiency: 

energy, data, and product lifecycle.  Every category is important for reaching circularity and encouraging sustainable 

technological progress [7]. 

Machine learning that focuses on sustainability stresses making model architectures that use less computing power and 

energy. This is an important step in separating AI innovation from increasing resource use.  To balance system performance 

with environmental cost, research, training, and deployment all focus on low-energy setups.  Designers can use hardware-

software co-optimization strategies by looking at energy profiles during both the training and inference phases. This lets 

them build sustainability constraints directly into model development.  A lot of different optimization methods have been 

suggested to make models more energy efficient, including pruning, quantization, and lightweight architecture design [8]. 

 

3. DATA-EFFICIENT LEARNING AND FEDERATED APPROACHES 

Sustainable AI promotes the minimization of data collection and storage, aligned with circularity objectives. Continual 

learning allows further adaptation without retraining on existing data. Privacy-preserving federated learning addresses 

confidentiality concerns by keeping data on-site, and transferability generates reasonable models across different 

environments with minimal new data [9]. 

Lifecycle assessment and explainability 

The incorporation of life-cycle assessment (LCA) with model training assists in measuring, visualizing, and optimizing AI 

system sustainability, supporting the transition to circularity. Sustainability-oriented AI requires a clear explanation of how 

optimization contributes to sustainability, enabling informed decision-making at each iteration and fostering accountability, 

transparency, and trustworthiness [10]. 

3. 1 Energy-aware model design 

Two approaches contribute to delivery efficiency in hardware-level design: low-energy architecture and hardware-software 

co-design. Enabling core energy-efficient architectures—such as intermittent, voltage-scaling, and dynamic-

reconfiguration circuits—for long inference time within a given energy budget, model choices such as compact model 

over-provisioning or AI accelerators support energy-efficient inferences [8]. Supporting an understanding of 

training/inference energy profiles facilitate the establishment of explicit optimization objectives. Such awareness permits 

dedicated architectural adaptations and selection of training objectives that address energy consumption [7]. 

Interoperability at the hardware-software boundary advances effective channel utilization during AI workloads and 

supports frameworks for energy-management techniques balancing accuracy and energy consumption. Energy-efficiency 

trade-offs between training techniques, e.g. pruning, quantization, and cluster learning, for temporal-coherence or sparsity 

already feature in end-to-end frameworks but are not yet connected to actual energy-consumption estimation. 

3. 2 Data-efficient learning and federated approaches 

In artificial intelligence (AI), the need for large datasets and effective, condition-agnostic model updates makes data 

efficiency a major objective. In the real world, there are often only a few samples available, which leads to the use of data 

minimization methods like semi-supervised learning.  AI systems also get data on a regular basis, which means they can 

keep learning without being held back by what they already know.  The study of data-efficient AI is progressing rapidly, 

highlighting its interaction with alternative architectural paradigms [11]. 
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 Federated learning is especially important because it tries to improve models while keeping data private, or, more 

generally, not knowing anything about the dataset.  Interest in this area has grown a lot, especially when it comes to apps 

for mobile phones.  Transferring data usually needs a lot of bandwidth, and in many cases, it's even impossible to transfer 

a model update.  So, federated approaches not only help protect privacy, but they also cut down on data exchanges.  

Transferable updates take these ideas even further by letting people use knowledge in ways that are harmful to others at 

work or on their devices [12]. 

Substantial effort has concentrated on federated and continual learning frameworks, which often accommodate transfer 

learning. The move towards decentralised data designs responds to the complexity of modern datasets, especially at large 

scales. AI deployment grammars can now encompass multi-context systems that model information at different levels or 

values across different locations [13]. 

Specific materials circularity outcomes, including the invisible configuration, traceability of components along supply 

chains, order fulfilment across geographic distributions, and patient recruitment, lend themselves to federated and ongoing 

updates. Research already exists that optimises distribution-scale deliveries across countries while transferring knowledge 

from one customer base to another, an approach that also contributes to the resource allotment of brands and logistics. 

3. 3 Lifecycle assessment and explainability 

Lifecycle assessment (LCA) should be integrated into model development to ensure that resource consumption and 

environmental impacts beyond mere task performance are considered. An LCA quantifies the overall resource use and 

emissions associated with the creation and operation of a model and helps to identify the best trade-offs, potentially leading 

to an improved sustainability profile of all products and services that rely on the model. Explainability requirements should 

also incorporate a sustainable-development aspect to capture whether and how the use of the model contributes to the 

longer-term sustainability of individual products/services and society at large. Explanations of model predictions should 

provide insights into how and why a model influences the consumption of critical resources, energy use, waste generation, 

and pollutant emissions; such insights, in turn, enable improved decision-making throughout product/service lifecycles 

[14]. 

AI for improving resource efficiency in circular-economy concepts and processes is increasingly prominent, with growing 

evidence supporting the emerging discourse. A collection of green-AI architectural patterns promotes this application 

domain by improving resource sustainability, supporting circular-economy principles like closing loops, lowering overall 

demand, and speeding up service delivery for products and services.  Still, it's important to carefully think about the trade-

offs between performance, energy use, data use, and environmental impact.  Evaluating and tackling these issues earlier in 

the architecture-design process—preferably during the model-design phase—will facilitate the pursuit of circular-economy 

resource-efficiency goals in conjunction with conventional performance targets, thereby enhancing sustainability outcomes 

[4]. 

 Adding AI to material-recovery processes has a big and positive effect on getting back a lot of materials, like plastics and 

metals.  On the other hand, AI helps close loops and reduce resource use and the environmental effects that come with it 

by making it possible to track and improve the management of circular supply chains. AI-enabled smart-manufacturing 

processes and production-scheduling methods that accurately forecast product demand are increasingly demonstrating their 

potential for circular-economy applications especially when efficiently allocating resources and limiting undesirable 

impacts such as production waste [4]. As shown in figure 2. 

 
Fig. 2. Core architectural components and sustainability interactions in Green AI systems 

 

The interconnections among core architectural components in Green AI systems are visualized in Figure 2. The figure 

highlights how data processing, algorithm design, resource management, and sustainability interactions collectively shape 

an environmentally responsible AI framework.  
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4. GREEN AI IN RESOURCE CIRCULARITY: CASE STUDIES 

The potential of artificial intelligence (AI) as a supporting technology to achieve the transition towards a circular economy 

has gained much attention recently [5]. Circular economy principles aim to restore and regenerate products, components, 

and materials back to the productive economy and preserve their value for as long as possible [15]. Therefore, the analysis 

highlights three case studies of green AI architectures explicitly focusing on resource efficiency, in line with the objectives 

of the international consensus on the circular economy. 

AI-enabled material recovery and sorting facilitate high electro-optical sorting for construction and demolition waste, 

which helps to increase the recovery rate significantly from the current 5% to better than 50% and improves the energy 

efficiency. AI systems for production scheduling based on machine-learning-enabled demand forecasting support a smart 

manufacturing initiative to reduce excess production and improve schedule accuracy. However, a trade-off between 

forecast accuracy and model energy consumption has to be dealt with to keep the over energy-kilogram saved ratio above 

0.25 for continuous energy management over seven days. AI-enabled traceability and transparency for products and 

materials within circular supply chains support logistics operations by optimizing inventory and routing. Simulation results 

indicate that the inventory optimization has a capacity of 40% space reduction and that the optimized routing is 

approximately three times shorter than the baseline solution; performance within the large-scale scenario remains similar. 

TABLE I. COMPARATIVE ANALYSIS OF GREEN AI ARCHITECTURAL APPROACHES AND THEIR CONTRIBUTIONS TO CIRCULAR 

ECONOMY PRINCIPLES 

Architectural 

Approach 

Core Principles Strengths Limitations / Trade-

offs 

Contribution to 

Circular Economy 

(CE) 

Key 

References 

Energy-aware 

model design 

Focuses on minimizing 

power consumption 

through efficient 
architectures, hardware–

software co-design, and 

low-energy inference. 

Reduces carbon 

footprint; enhances 

computational 
efficiency; compatible 

with existing AI 

pipelines. 

May sacrifice 

accuracy or 

performance; requires 
costly hardware 

adaptation. 

Promotes energy 

circularity by 

decoupling AI growth 
from energy use. 

[7], [8] 

Data-efficient 

learning 

Employs semi-supervised, 

continual, and federated 

learning to minimize data 
collection and storage. 

Reduces data 

redundancy; enhances 

privacy; lowers 
bandwidth and storage 

demands. 

Potential loss of model 

generalization; high 

initial coordination 
cost. 

Supports information 

circularity by 

optimizing data reuse 
and minimizing waste. 

[9], [12], 

[13] 

Federated and 

decentralized 

learning 

Enables distributed training 

without centralizing data, 
improving data sovereignty 

and local resource use. 

Increases user privacy; 

reduces data transfer; 
supports localized 

optimization. 

Energy costs per node 

can be high; 
synchronization 

overhead. 

Facilitates distributed 

resource optimization 
and localized circular 

processes. 

[12], [13] 

Lifecycle 

assessment (LCA)–

integrated models 

Embeds LCA into AI 
design and evaluation to 

measure environmental 

impact over the model’s 
lifecycle. 

Offers holistic 
sustainability insight; 

ensures transparency 

and accountability. 

Data-intensive; lacks 
standardized metrics; 

complex to apply 

universally. 

Enables closed-loop 
evaluation and 

environmentally 

responsible AI lifecycle 
management. 

[10], [14] 

Explainable and 

accountable AI 

(XAI) 

Enhances interpretability of 

sustainability impacts and 
decision processes. 

Improves trust, 

transparency, and 
decision quality; aligns 

AI with ethical CE 

values. 

Complexity in 

modeling; may slow 
deployment. 

Strengthens ethical 

circularity by linking 
accountability with 

resource governance. 

[14], [15], 

[21] 

Smart 

manufacturing & 

demand 

forecasting models 

Integrates AI for predictive 
production and logistics 

optimization. 

Reduces waste; 
improves material flow 

efficiency; supports 

agile circular supply 
chains. 

Energy-intensive 
training; requires 

precise demand data. 

Reinforces material 
circularity by 

optimizing production 

and reducing surplus. 

[16], [17], 
[18] 

AI-enabled 

traceability and 

supply-chain 

transparency 

Uses AI to track materials 

and products through the 
entire lifecycle. 

Increases visibility; 

supports reuse and 
recycling; reduces 

inefficiencies. 

Implementation costs; 

interoperability 
challenges. 

Promotes loop closure 

and resource recovery 
efficiency. 

[4], [5] 
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Fig. 3. AI-enabled circular resource flow integrating material, data, and energy loops 

Figure 3 illustrates the AI-enabled circular resource flow that integrates material, data, and energy loops. The central “Green 

AI Core Engine” serves as the operational nexus driving sustainable resource optimization across all loops, forming the 

conceptual foundation for the subsequent case studies. 

4.1 Material recovery and optimization 

Most materials used by society today are non-renewable resources and their demand is expected to almost double by 2060 

[16]. Implementing a circular economy based on reduction, re-use, repair, and recycling can mitigate looming supply 

shortages by extending the use of materials and recirculating output flows [5]. The global healthcare sector generates 

considerable amounts of waste—up to 25 percent of costs could be eliminated by removing it altogether—yet little attention 

is paid to waste eviation. Robotic disassembly, intelligent material sorting, and machine-learning-guided visual control 

play an important role in bolstering material recovery. 

To support intelligent disassembly, automated and semi-automated sorting, and real-time visual inspection for disassembly 

and sorting, novel Embedded Visions Systems (EVS) are developed and incorporated into Flexible Robotic Cells (FRC) 

provided with TI-DNN compliant data sets. The formulation of a flexible robotic-based disassembly system is presented 

and its study framing is set, outlining the process’s main requirements. The implementation of a hierarchical decision-level 

strategy combined with a Set-Input-Output-Place Petri Net graphical representation reflects the desired global functionality 

of the system and helps classify both hardware and software building blocks, also indicating their interconnections. 

4.2 Smart manufacturing and demand forecasting 

Smart manufacturing and demand forecasting present promising opportunities for improving resource efficiency in circular 

economies through AI-enabled systems. The ever-increasing demand for customization and reduced lead times has made 

it critical for manufacturing companies to fine-tune their production and inventory planning. Statistical-forecasting methods 

are often unable to cope with the short life cycles of Industrial Internet of Things products, while deep-learning models 

have the potential to extract value from historical data by integrating heterogeneous time series at multiple time scales. 

However, deep-learning methods typical have high associated energy costs, with deep-learning models consuming 8.5 

times more energy for a 22% higher operational performance compared to traditional macro-models [17]. 

In materials recovery facilities and waste-to-resource scenarios, machine-learning-based production scheduling can bring 

substantial improvements to waste reduction and the circular economy. Scheduling decisions require a plant-wide view to 

align with demand while reducing work-in-process inventory waste. Hybrid modeling can provide greater accuracy for 

short-term scheduling; illustrate the trade-offs between energy, additional accuracy, and model complexity; and enable 

diverse modeling strategies within a single structure with fewer state variables. Such models can then be combined with 

reinforcement learning and an accelerator algorithm to improve solution quality and convergence speed. [18] 
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4.3 Circular supply chains and logistics optimization 

The increasing virtualization of supply chain systems provides new opportunities for circular supply chains, enabling 

process optimization and end-of-life traceability, thus facilitating reverse logistics and location-based reuse. To this end, 

AI plays a crucial role by improving demand forecasting accuracy, assessing product lifetime for replacement and reuse, 

and designing environment friendly and sustainable product alternatives [5]. 

It is very important to use the right protocols at each supply chain node to keep the quality of the products during location-

based distribution and product reuse.  Due to outside forces, rules, and government authorities, circular supply chain 

operations are very uncertain. For this reason, a supply chain network should be built with the goal of gradually lowering 

the costs of the circular economy, degradation, and replenishment.  AI algorithms can make these kinds of complicated 

systems much more resistant to unexpected problems. 

 

5. TRADE-OFFS AND GOVERNANCE 

Green AI represents a transformative shift towards more environmentally friendly principles and practices in artificial 

intelligence (AI) [15].  In urban cultures, material cycling is important for keeping healthy biophysical stocks and flows of 

metals, industrial materials, nutrients, and organic matter as a good replacement.  The literature acknowledges green AI 

solutions that have both direct and indirect impacts on circularity objectives.  The gradual establishment of life-cycle 

assessment (LCA) standards for non-functional AI attributes aligns with green AI architectures and design principles, 

directing data and energy-efficient circular interventions [8]. 

Quantifying trade-offs among various, frequently conflicting, circularity objectives facilitates more informed decision-

making.  Trade-offs can show, for instance, energy–data recycling, hardware–software co-design, and safety–performance.  

AI growth might not be linked to regular punishments, which would encourage open-source, multi-use generative 

applications.  More horizontal ecosystems have been created, and different goals in supply and demand models lead to 

design choices like making accurate forecasting more understandable. 

5.1 Environmental cost accounting in AI systems 

Artificial intelligence (AI) systems have considerable, yet often disregarded, environmental costs manifesting as 

greenhouse gas emissions and non-renewable resource consumption. These costs arise at three distinct stages: the design 

and development of AI models, the use of trained models in AI applications, and ultimately the provision of AI-related 

products and services to end users [15]. Each of these stages generates environmental burdens that are unique to the AI 

field. According to Zhao et al. [7] , 70% of total AI operation costs are linked to data processing, storage, and network 

transmission, raising critical sustainability concerns about the responsible design of AI systems. 

AI-related emissions and resource use can be allocated between internally-used and externally-supplied components. A fair 

accounting approach might consider a model as a standard-one-and-zero tool. The hazards of AI designs are often visible 

through a knee-shaped curve in operational cost and pollution. Despite the sustainability pressure affecting the whole 

economy, the shadowed environmental burdens of AI persist, placing conundrums on academic intellect and enterprises. 

5.2 Policy and standardization implications 

Until recently, regulatory frameworks only covered certain areas or topics, which led to standards that weren't connected.  

A paradigm shift is happening, and the standards set by the International Organizations for Standardization (ISO) and the 

International Electrotechnical Commission (IEC) now reflect this.  The European Union strategy also lists important things 

to do [19]. 

Interoperability standards are necessary for combining different solutions, but they have to deal with local use and changing 

data.  The European Strategy pushes for a set of rules that everyone in the world can agree on for interoperable data.  

Policies about the data economy must make sure that users own and control their data. 

Governance mechanisms are important for digital technology, but they aren't as advanced as the technology itself.  

Strategies for data governance have been around for a long time, but they have sped up in the last few years.  The European 

Strategy lays out a plan for how to govern digital and AI technology [20]. 

 

6. EVALUATION FRAMEWORKS AND METRICS  

Artificial Intelligence (AI) as it is used today needs a lot of energy, data, and other resources.  We need ways to keep an 

eye on how these resources are being used and what effect they have on the environment.  Putting sustainability metrics 

like energy, data, and lifecycle resource use into AI systems lets designers and modelers go for greener options [8].  Deep 

AI benchmarks and thorough audit trails that explain why design choices were made, how they affect usage, and what other 

models could be used can help make AI more environmentally friendly [15].  Creating a useful list of benchmark datasets 
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for a wider range of application areas can help raise awareness and speed up progress.  Reproducibility requirements can 

create shared starting points for different datasets. 

6.1 Embedded sustainability metrics 

By using resource-efficient green architectures to collect sustainability metrics, AI systems can better align with the goals 

of a circular economy. 

To fully understand resource sustainability, you need to think about energy use, data needs, environmental effects, and 

costs at every stage of the process [8].  However, sustainability issues are often seen as extra or even ignored in AI research.  

To address this issue, we need a comprehensive approach that can identify general categories for evaluating the 

sustainability of architectures, methods, and systems as a whole.  Green AI proposals should also include the energy 

footprint, data footprint, and lifecycle assessment (LCA) as part of the push to standardize metrics for responsible AI [15]. 

Traditional metrics look at performance, robustness, and generalization, while a holistic assessment framework combines 

these with measures of material intensity and other aspects of sustainability.  Researchers can create frameworks that 

capture the energy and data needs of AI-based solutions throughout the entire training and deployment lifecycle by creating 

sustainability metrics alongside traditional performance metrics. These frameworks can then be linked to sustainability 

goals. 

6.2. Benchmarking and auditing green AI 

Governments, researchers, and industry professionals are prioritizing the enhancement of sustainability in complex 

technological systems, particularly artificial intelligence (AI).  Because AI is so important for solving many environmental 

and sustainability problems [7], it is also strategically important to find and use ways to lower AI's own resource needs.  

"Green AI" is an important way to look at AI sustainability. It encourages people to think about how modeling choices and 

decisions will affect the environment in the long term and how much energy and data they will use [8].  Circular economies 

have become a very effective way to make many different areas more sustainable.  So, it's important to look into how green 

AI methods and building choices can help circular economies and a more sustainable future.  Some of the first specific 

questions to think about in this case are:  What AI-powered apps help with resource efficiency and make it easier to follow 

circularity principles like separating growth from resource extraction and improving material flows?  How can green AI 

techniques, such as energy-efficient machine learning models, data-efficient learning strategies, and better lifecycle 

assessment, help specific applications make better use of their resources?  What architectural choices offer both high 

performance and a substantial green AI footprint to enhance understanding of trade-offs and facilitate prioritization?  Lastly, 

which internationally accepted guidelines, frameworks, or metrics measure AI sustainability aspects like energy, data, and 

long-term environmental impact while still being able to work with performance? 

 Answering these questions helps us learn more about how green AI, circular economies, and resource efficiency are related. 

This is an important but rarely studied and analyzed topic.  A systematic examination of the pertinent literature concerning 

the applicability of green AI to the advancement of circular economies, alongside associated architectural alternatives and 

guidance, may uncover numerous novel patterns, reveal previously unexamined interactions, and elicit considerable interest 

from both industrial and academic communities. 

 

7. BARRIERS, RISKS, AND ETHICAL CONSIDERATIONS 

Even though many people think that using green AI architectures is a good idea, it does come with some problems.  For 

architectural exploration, resources are still needed; models that use less energy can sometimes be useless [15].  Federated 

learning usually uses less data and energy overall, but individual federated clients may not always get a lot of data reduction 

during their training, which can be expensive [7].  As the number of candidates increases, life cycle analysis becomes more 

useful for comparing models. However, creating an accurate and reliable life cycle analysis is still a big challenge.  One of 

the many things that life cycle analysis needs to be useful with complex models is that it needs to be easy to understand. 

Putting green AI architectures into practice can lead to more ethical problems.  Equity is a concern because any part of 

society that already has limited access to data, data storage, computing power, economic revenue, or other important 

resources will lose even more when models need a lot of data or resources.  Some types of data-aware model architectures 

can make this worry even worse.  Transparency is still a problem because it is not as easy to decode life-cycle information 

from a green AI-enabled approach as it is from a traditional one.  Without easy and open ways to share this information, 

accountability can also become unclear [21]. 

 

8. FUTURE PROSPECTS AND RESEARCH AGENDA 

Emerging technologies herald the prospect of a new industrial revolution, driven by advances in big data and AI [7]. Key 

sectors agribusiness, energy, smart cities, materials, and manufacturing embark on an ambitious transition c475bb4fd-06c8-

4869-9683-bc7cb4bee968ed "Green Deal" or "green product" aimed at curbing or cutting GHG and environmental 
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footprints, increasing resource recovery, and boosting over475bb4fd-06c8-4869-9683-bc7cb4bee968 circularity [5]. 

Similarly, scientific works supporting "Green AI” strive for a greener world and healthier blue planet through more 

sustainable AIs. Despite rapid improvements in energy and carbon footprints of computational budgets and storage, AIs 

successfully reduce inherent emissions and resource consumption for their targeted applications [15]. 

Moving from AI concerned solely with efficiency of resource-use inputs—mainly energy, data, and biodiversity—to AI 

operating on the other sides of “circularity” is worthwhile and timely. 

Illustrated blueprints proposed signify a first-and-foremost forward step towards remaining flexibility in each architectural 

component design and addition, and diversified space structure explorations. Each blueprint, therefore, neither prescribes 

a necessarily move towards yet greener set of ingredients nor confines an exclusive measure of GP. Each element articulates 

only one of considerably high possibilities, requires no order, and welcome adherent and integration with emerging 

equipment, facilities, and other trends such as Spatial-Audio or 6G. Following five deliverables are considered 

progressively optimal; nevertheless, advancing at least three penultimate items largely facilitates consistent evolution of 

the entire circularity which remains ascent. 

 

9. CONCLUSION  

This thorough and in-depth study shows how important and game-changing AI technologies are for not only improving 
resource circularity but also for making progress toward meeting important circular economy goals.  The strategic use of 
different architectural patterns that are carefully aligned with green AI principles creates many ways for businesses to work 
that are specifically designed to make the most of their resources.  Also, these new ideas can have a big impact on 
sustainability outcomes, which are becoming more important in today's world.  The use of AI-enabled material recovery 
systems is especially helpful because it greatly improves sorting accuracy and recovery rates, which in turn makes the whole 
recycling process much more efficient.  These advanced AI systems also improve the accuracy of demand forecasting while 
lowering energy use per unit.  This has two benefits that help meet both economic and environmental goals.  A clear and 
thorough understanding of these complex and interrelated relationships can help people make smarter and more strategic 
investments in AI technologies. This will help new green AI architectures spread more quickly and widely across many 
different industries and sectors.  This meaningful use of AI not only makes operations more efficient, but it also puts a lot of 
emphasis on building a sustainable future.  This method makes sure that resources are used as little as possible and that waste 
is handled properly. This strengthens the commitment to a circular economy model that benefits everyone involved in this 
effort.  Organizations can lead the way in the sustainability movement by recognizing and taking advantage of these 
opportunities. This will open the door to new ways of using resources and dealing with waste that could change the way we 
do things and make the planet healthier for future generations. 
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