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A B S T R A C T  

The population-driven, urbanization-driven, and labor shortage-driven global demand for food 
increasingly requires technological innovation to meet such a need. Agricultural robots are among the 
most recent technological innovations aimed at enhancing productivity, efficiency, and sustainability 
while improving the state of psychological and physical health of their human operators. The current 
article reviews studies reporting on the design and control of those robotic systems that set an objective 
not only to increase yields but also to increase psychological comfort through approachable and 
collaborative Human–Robot Interaction (HRI). Agroautomation technological drivers are discussed in 
this paper. HRC is presented as a framework for adaptive user-centered system design with necessary 
factors regarding cognitive ergonomics levels of autonomy and interfaces for cooperation—such as 
gesture- and electromyography-based control in unstructured environments. Analysis regarding design 
considerations, challenges in autonomy, and nonverbal communication methods relevant to achieving 
safe, efficient, and psychologically supportive interaction between humans and robots is provided. With 
advanced robotics, artificial intelligence, and Internet of Things (IoT) technologies, collaborative robotic 
systems have the potential to transform modern agriculture- increasing productivity while improving 
human well-being. It is this techno logically intensified wave that grows fields of hope. 

 

1. INTRODUCTION 

The WHO has considered hunger as a very intense global problem. Even though more than 231 million people from 53 
countries have reported high levels of acute food insecurity, for such a problem to be solved, adequate and proper security 
of food must be ensured. This shall base itself on modern agricultural technologies. In this context, development work has 
to be taken up and the traditional methods left behind[1-5]. Therefore, Robots were introduced so that it could increase 
production reduce labor and give psychological comfort to farmers. At the same time with population growth aging 
demographics and the accelerating pace of life highlight the need for replacement of traditional manual intensive hazardous 
farming practices into automated systems This scenario has propelled substantial research interest in agricultural robotics 
reflecting the imperative role that modern technologies can play in advancing productivity efficiency and sustainability in 
agriculture. Agricultural robots and smart automated units normally use advanced sensors and learning features to ensure 
accurate operations[6-9]. Much effort has been directed toward the realization of full automation and improved 
performance[10]. These robots thus execute compound functions accurately even under stringent or harmful conditions[11]. 
For example, mechanisms for evaluating the combined impacts that temperature and pressure have on flow properties are 
important steps towards the creation of more strong robotic systems[12]. Perception-based navigation algorithms were 
developed by Rovira et al., which is a requirement for autonomous operation, while Alsalam et al. developed agricultural 
UAVs using a configuration approach supporting intelligent decision-making[13] [14]. High-precision strategies were 
introduced in control systems by Zhang et al. for field-phenotyping efficiently. A flexible end-effector was designed by 
Wang et al. that attained an 86% successful picking rate for tomatoes, thus approaching delicate harvesting tasks[15]. This 
progress in agricultural robotics has inspired other fields as well, such as the industrial robotics area where a method for 
energy quantification consumption of pneumatic systems using integration of air pressure, volume, and temperature has been 
defined. Agricultural robots have developed into the three major categories so far, field robots, fruit, and vegetable picking 
robots, and animal husbandry robots. Reviews of the literature show that the bulk of current research is in field robots and 
picking robots which are two components of fruit and vegetable work. Though they may greatly differ in application, core 
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technologies for these robots include stable mobile platforms, multi-sensor fusion, high image processing, intelligent 
algorithms, and versatile locomotion control. (Figure 2)   

 

Fig. 1. Core technologies involved in agricultural robotic applications[5] 

It is information technology, combined with the Internet of Things that has made agricultural systems more intelligent. IoT 
sensors, robotics, and communication gadgets make their way into agriculture with an application in environment 
monitoring, crop data acquisition, and smart path planning. Rai Hari Mohan et al. observed that currently the major portion 
of collecting agricultural information is done manually, however, these activities can be automated through a system based 
on IoT as suggested by them to increase efficiency. Smart monitoring as proposed by Saha Himadri et al who designed a 
system utilizing humidity sensors, pH sensors as well as PIR sensors so that farmers could manage all-natural hazards was 
proposed for the realization of smart agriculture. Wongchai Anupong et al have introduced AI-enabled soft measurement 
techniques into the remote sensing model for increasing data accuracy. presented IoT-based hydroponic farming using 
realtime NPK sensors, sunlight, turbidity, pH, temperature, and image sensors. The application applied deep learning to 
monitor the health condition of crops and can be continuously tracked through mobile applications[16-20]. Li Xiaofen 
discussed the implementation of smart agriculture models for national food security based on IoT networks and sensor-
driven data collection. Generally speaking, such agricultural monitoring systems powered by IoT have enhanced accuracy 
as well as minimized crop losses due to environmental challenges and disasters. This led henceforth to a trend in which 
mobile robots are increasingly used for field monitoring and crop data collection. Song YunYun et al. noticed major 
navigation issues regarding robots in unknown environments described the use of Canny and Otsu methods in obstacle 
feature extraction steps besides image depth estimation for gap detection along with an improved bug algorithm for 
autonomous obstacle avoidance. review and analyze the design of agricultural robots that can increase productivity and crop 
yield with psychological comfort and ease of use for human operators. Therefore, the purposes are to describe the present 
condition of agricultural robotics and automation which support increased efficiency, precision, and sustainability in farming 
activities; to identify the role of Human–Robot Collaboration (HRC) and Human–Robot Interaction (HRI) in developing 
adaptive, intelligent, user-centered robotic systems applicable to complex environments such as agriculture that constrain 
factors for humans. Therefore, this review attempts critically to discuss how high-level advanced robotic design together 
with proper human-robot collaboration will contribute toward making a joint improvement in raising agricultural 
productivity and ensuring a good human experience that is sustainable[21]. 

 

2. TECHNOLOGICAL AND SOCIETAL DRIVERS OF HUMAN–ROBOT COLLABORATION IN 

AGRICULTURE 

Technological change, happening together with large demographic shifts (Acemoglu & Restrepo, 2021) 
and greater urbanization (Zimmerer et al., 2021), led to the fast adoption and development of robotics technologies[27]. The 
pandemic of COVID-19 in the early 2020s reminded all about the need for automation [22]. it also led to a boom in robotics-
oriented firms and innovations (Seidita et al., 2021)[20]. Robots have obvious benefits they can work in perpetuity; they do 
not get sick; there are no lockdowns or any mobility limitation that affects them, and they can be disinfected very easily[30]. 
This results in reinforcing again on a global scale that robotic solutions advancement is still required to build resilient 
economies capable of keeping humans separated while keeping operations running (Feil-Seifer et al., 2020) . 
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The International Federation of Robotics splits the main classes of robots into industrial and service robots. Service robots 
are again split into personal/home and professional types. Professional service robots work in many fields like logistics, 
environment work, defense, inspection and upkeep, cleaning, human exoskeletons, and farming—which is the topic here . 
In agriculture, robotics technologies will be able to take over such laborious and monotonous activities as spraying, 
harvesting, and weeding—activities for which it is usually not possible to find human workers. Apart from task automation, 
these technologies improve data collection and decision-making hence better production efficiency high quality yields as 
well as low operational costs (such as the cost of pesticides) are realized. However, the development of agricultural robots 
is highly demanding because they have to operate in unstructured environments where there are variations in terrain, objects, 
and even lighting conditions . 
Since the early 1980s, autonomous and semi-autonomous robots were successfully used for open-field and greenhouse 
applications. They are very helpful in reducing labor requirements as well as increasing productivity (Vasconez & Cheein, 
2022; Edan et al., 2022)[6]. The application of these robots in many stages of agriculture has already been initiated. Some 
of the activities include soil preparation (Oliveira et al., 2021), weeding (Slaughter et al., 2008), spraying (Adamides et al., 
2017a; Berenstein & Edan, 2017), harvesting (Arad et al., 2020; Kootstra et al., 2021), and crop monitoring activities such 
as phenotyping, mapping (Moreno et al., 2014) and localization  . Industrial robots have worked in highly controlled 
conditions whereas agricultural robots must work in a less predictable environment. They are intended for unstructured and 
dynamic terrains with different weather conditions and inconsistent illumination resulting from moving sunlight or clouds. 
Also, they will be dealing with biological material of different shapes, sizes, and colors fruits, vegetables, and plants located 
in the field in an unpredictable manner  . 
In such complex and dynamic environments, Human–Robot Collaboration (HRC) becomes crucial, particularly for non-
professional users[7]. HRC and more broadly, Human–Robot Interaction (HRI) represents an expanding interdisciplinary 
field that bridges robotics, computer science, human factors, cognitive psychology, and design. HRI is defined as “a field of 
study dedicated to understanding, designing, and evaluating robotic systems for use by or with humans” (Goodrich & 
Schultz, 2007). Fundamentally, HRI research focuses on developing technologies and interfaces that facilitate effective and 
intuitive interaction between humans and robots, whether in direct physical collaboration or remote operations. Enhancing 
HRI is therefore essential to improving both the usability and efficiency of robotic systems in agriculture and beyond. 
 

3. ROBOTS AND HUMANS WORKING TOGETHER: BOOSTING SMART FARMING SYSTEMS. 

Before To overcome challenges brought about by complicated agricultural settings, augmenting humans with robots has 
been considered as a prospective solution.Human–robot interaction (HRI) is defined as an interdisciplinary area for the study, 
design, and evaluation of collaborative systems drawing on knowledge bases from artificial intelligence, robotics, 
ergonomics, engineering, computer science, and social sciences. HRI describes a process in which humans and robots work 
jointly as a team to accomplish common goals through information exchange autonomy and optimal task allocation[23]. In 
this process human dexterity perception judgment and decision making are utilized together with the robot’s accuracy 
repeatability and strength. These robotic cognitive abilities are made possible by several sensors such as laser scanners RFID 
cameras and actuators hence supporting multi functionality durability flexibility and adaptability to changing situations[24]. 
 

4. DESIGN CHOICES AND AUTONOMY HURDLES IN HUMAN-ROBOT INTERACTION. 

Major difficulties of HRI Collaborative systems that are effective in different working conditions and levels of interaction 
are described. Approaches to improve situation awareness reduce the tendency for blaming human operators for ‘human 
error’ when abnormal situations have not been detected, as this is the real scenario. Inadequate system design and bad 
interaction mechanisms impede the ability of a human operator to implement optimal responses. Two factors mainly 
advanced HRI: firstly, the degree of robot autonomy; secondly, proximity between humans and robots during interaction. 
The level of autonomy in interactive systems depends on strategies for providing flexible HRI such that intervention by 
humans is possible whenever necessary. System design should ensure human mobility and visibility besides not being 
complex or inconvenient interfaces to be avoided. Such setup requires that robots have cognitive abilities for accurate and 
seamless interaction too thus supporting adaptive autonomy[25]. A further evaluation has to be taken in all proximity-related 
scenarios like following, passing, avoiding, or physical contact. The ratio of human to robot and the roles that humans may 
take on are also included in effective HRI design. Humans may be programmers, bystanders, operators, supervisors, or 
information users. Other design considerations are adaptability and task allocation as well as the duration of shared 
workspace interaction. All objectives have to be made sure to align coherently. 

 

5. WAYS OF NON-VERBAL COMMUNICATION FOR BETTER INTERACTION BETWEEN 

HUMANS AND ROBOTS IN FARMS . 

Communication frameworks come naturally with interaction for the purpose of fruitful exchange of knowledge 
between a human and a robot. Thus, there is a necessity to probe into other more natural means of communication, 



 

 

 

111 Saleh et al, Vol. (2025), 2025, pp 108–115 

like body language and verbal input. Body language may include facial expression, body posture, hand gesture; 
whereas verbal input can be limited by the noise in agricultural environments as well as different speech patterns. 
Among these modalities for interaction, hand gesture recognition implemented either through vision-based 
sensing or specialized wearable devices has taken much recent attention in research.Surface electromyography 
(sEMG) sensors have been used to record muscle electrical activity and hybrid interaction methods have also 
been explored but they are still lagging behind due to major drawbacks. For example, vision-based systems fail 
miserably when there is more than one person involved multiple backgrounds or in different lighting conditions. 
Research Focus of Leading Systems and Human–Machine Journals. In addition, Transactions on Systems, Man, 
and Cybernetics and Systems Research and Behavioral Science focus on systems engineering, encompassing a 
variety of methods such as modeling, simulation, and optimization, while also addressing economic and social 
aspects of systems. Meanwhile, Transactions on Human-Machine Systems and Human Behavior and Emerging 
Technologies emphasize human–system and organizational interactions, including system testing, assessment, 
and cognitive ergonomics within systems and organizations. 

6. LEVELS AND STAGES OF AUTOMATION IN HUMAN–ROBOT INTERACTION 

In general, automation can be divided into four main stages (a) information acquisition, (b) information analysis, 
(c) decision selection, and (d) action implementation. Each of these stages can operate across varying levels of 
automation. Following the framework proposed by Parasuraman et al.  for the decision and action stages, this 
study adopts a 10-point scale to represent different levels of autonomy.On this scale, higher levels correspond to 
greater autonomy of the computer or robot over human actions. When a task is performed entirely by a human, 
it is assigned the lowest level (“1”), whereas full robotic autonomy, where the robot makes and executes decisions 
independently, corresponds to the highest level (“10”). Intermediate levels reflect partial automation and various 
modes of human–robot interaction (HRI). For instance, at level 4, the robot suggests alternative decisions where 
the robot makes and executes decisions independently, corresponds to the highest level (“10”). Intermediate 
levels reflect partial automation and various modes of human–robot interaction (HRI). For instance, at level 4, 
the robot suggests alternative decisions, but the human retains full authority to accept or reject them. At level 6, 
the robot provides the human with limited time to intervene before automatically executing its own decision. The 
10-point autonomy scale, along with the four stages of automation, is illustrated in Figure 2. It is important to 
note that, in practice, multiple levels of automation may coexist rather than a single fixed level, as different 
interaction scenarios can occur during HRI. 

 

Fig. 2. (a) Simplified four-stage model of agricultural applications, including information acquisition, information analysis, decision selection, and 

action implementation. (b) Levels of automation for the decision and action stages [60]. 

 

• Research Focus of Top Systems and Human-Machine Journals 
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Also, Transactions on Systems, Man, and Cybernetics plus Systems Research and Behavioral Science talk about 
systems engineering with many ways like modeling, simulation, and optimization adding economic plus social 
sides of systems. On the other hand, Transactions on Human-Machine Systems alongside Human Behavior and 
Emerging Technologies focus more on human–system plus organizational links including system checks, reviews 
as well as cognitive ergonomics in systems and groups. 

• Understanding How Automation Works in Human-Robot Interaction 
Generally, automation can be broken down into four major stages: information acquisition, information analysis, 
decision selection, and action implementation. Any of these stages can work at different degrees of automation. 
The paper adopted the framework proposed by Parasuraman et al. for the decision and action stages and used a 
10-point scale to describe autonomy levels. In this scale, increasing levels indicate an increasing amount of 
freedom for a machine or robot with respect to human actions. If a task is executed fully manually by a human 
being then it will have the lowest level(“1”), whereas full robotic autonomy in which all decisions are made and 
implemented by the robot itself without human participation will have the highest level(“10”). All intermediate 
levels define partial automation and its possible variants in human–robot interaction (HRI) modes. For example 
at 4th level, the robot proposes options to decide where the robot makes and executes decisions independently, 
corresponds to the highest level (“10”). Intermediate levels are demonstrative of partial automation and different 
schemes of human-robot interaction. At level 4, the robot makes suggestions on alternative decisions, but the 
human in the loop has full authority to accept or reject them. At level 6, the robot gives the human limited time 
to intervene before its decision is implemented automatically. The 10-point autonomy scale together with the 
four stages of automation is indicated in Figure 2. Practically speaking, multiple levels of automation exist rather 
than a single fixed level due to different interaction situations during an HRI. 
The Human–Robot Collaboration (HRC) main goal is to design and use robots so that they improve human 
abilities (perception, decision-making, or adaptability), adding the precision, consistency, endurance, and 
strength usually found in robotic systems. Effective cooperation comes out of autonomy sharing, information 
sharing, and task structuring; it finds application in all phases of robot operation that can be classically described 
under the Sense–Plan–Act rubric. This area of study falls under the rather broad rubric of Human–Robot 
Interaction (HRI). 
Recent reviews on human–robot collaboration in agriculture have mostly looked at the main ideas behind 
Human–Robot Interaction, such as metrics, design plans, and categories. They focused on farm uses that make 
work better by adding more speed, safety, output, and general gain. In a like manner, Benos et al. (2020) talked 
about the results of human-robot teamwork for safety (ergonomics) and output from a manager's view. Our 
findings use these thoughts to take a closer look at the joining of helping robots in farm systems. 

• Challenges 
Throughout history, increasing food production has often meant expanding farmland by clearing forests or 
plowing grasslands. This expansion has led to the destruction of entire ecosystems worldwide, such as North 
America’s prairies and Brazil’s Atlantic forests. Unfortunately, tropical forests are still being cleared at alarming 
rates. Today, agriculture occupies nearly 500 billion hectares—about 40% of the planet’s available land. 

• Current Applications 
Building on the core technologies integrated into agricultural robots, a new wave of applications has transformed 
how food is cultivated and supplied. Innovative software, services, and techniques have been developed to 
enhance data collection and operational efficiency across the industry. These technology-driven farming solutions 
significantly improve productivity, enabling farms to boost food production while optimizing resources. 

• Related Research and Development 
The growing interest and investment in fields such as the Internet of Things (IoT), artificial intelligence (AI), and 
robotics have fueled rapid innovation aimed at achieving fully automated farming systems. These advancements 
are paving the way for the commercialization of next-generation agricultural technologies. Key areas of research 
include computer vision, robotic motion and manipulation, and multi-agent coordination, with practical 
applications in pest and disease detection, automated harvesting, and collaborative multi-robot operations. 
 

7. EXPLORING FARMING IN HAWIJA: A HANDS-ON LAB FOR HUMAN-ROBOT TEAMWORK 

Hawija, basically lies to the southwest side of Kirkuk Governorate, and is among the most agriculturally productive areas in 
Iraq, hence an ideal living laboratory for implanting collaborative agricultural robotics. The alluvial plains these former 
ancient tributaries fed always maintain high levels of soil fertility particularly silty-clay loams with average organic matter 
content ranging between 1.3–1.8%. This region specializes mostly in wheat, barley, sunflower, tomato, and greenhouse 
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vegetable production; all adding up to the agricultural economy of Northern Iraq. Regional directorate data (2022–2024) 
reveals a yield averaging between 3.2–3.8 tons/ha from the traditional irrigated field for wheat in Hawija. A perusal shows 
modernized farms giving yields approaching even 4.5 tons/ha! It is motivation enough to integrate robotic systems by which 
numerous farming operations could be optimized . 
Manual work has always been the principal socio-technical condition of farmers in Hawija, but any external intervention is 
welcomed because that region is highly known for its farming activities. It is not a strange fact that farmers prefer using 
manual labor when harvesting, and monitoring the condition of the soil as well as making irrigation adjustments. Variability 
in climate conditions has recently imposed threats on their productivity and well-being with labor scarcity due to migration 
plus seasonal heat waves. A survey done on 120 farmers from four blocks of Al-Abbasi, Al-Zab, Riyadh, and central Hawija 
found 74% complaining about increased physical strain; 61% expressing concern about yield stability; and 42% ready to 
accept robotic assistance if the system would be simple, psychologically comfortable, and safe. Such figures show a budding 
user need: i.e., add technology that would not replace farmers but cooperate with them by intuitive interfaces . 
The proposed design of the robot centered on psychological comfort, user-adaptive control, and non-verbal communication 
is exactly what happens inside these needs. In farming with the context of Hawija in a real-time scenario, this kind of robotic 
system can manage doing soil monitoring in real-time, automatic crop sprayer assistant for light weight harvesting and 
environment sensing by IoT modules. This will include integrating EMG or Gesture-based interfaces so that gloves or 
armbands worn by operators enable sending remote commands to the robot while remaining at a safe distance from the 
source of heat or pesticide exposure. The current interface means more specifically for Hawija since 63% hand fatigue of 
farmers' above age 45 was found besides reduced manual dexterity during peak seasons . 
The psychological dimension is perhaps even more compelling. As reported in the 2024 Hawija Agricultural Cooperative, 
farmers noted work in the fields often as “mentally heavy,” particularly under conditions of unstable climate. A robot capable 
of socially meaningful cues LED-based emotional signaling; smooth anthropomorphic motion; and predictable locomotion 
would keep operator stress low. HRI research indicated that predictable robot trajectories reduce anxiety by close to 30% 
when tested within a field-testing environment. Farming in Hawija happens to be a family activity. That reassurance helps 
multigenerational adoption . 
The robot can help make up for the loss in human laborers: according to the agricultural office of Hawija, manual workers 
have reduced by 18% in the recent six years. By taking over all the repetitive tasks-which include soil sampling, row 
checking, and pest spotting the robot will ensure productivity even during a deficit period. Monitoring with IoT can send 
field data to a mobile device enabling decisions to be taken by the farmer without his continuous physical presence. 
 

8. CASE STUDY: USING A HUMAN-CENTERED AGRICULTURAL ROBOT ON WHEAT AND 

GREENHOUSE FARMS IN HAWIJA 

A structured casestudy was designed within Hawija’s top farming industries: open-field wheat farms and semi-closed 
greenhouse vegetable systems to test the practical use of the proposed human-centered agricultural robot. These setups show 
two different working areas one large and not organized, the other managed and limited in space—both key parts of Hawija’s 
farming system. The case study checks output, worker stress, and mental reactions before and after adding the robot. 
The experimental design was applied to three farms in Al-Zab and Abbasi districts by 14 farmers of different experiences. 
Baseline measurements before deploying the robots include an average time of 93 minutes for wheat-row inspection per 
hectare, a daily step count of 17,000 steps logged by the farmers, and a physiological indicator of stress based on heart-rate 
variability surveys wherein 64% rated themselves at moderate to high levels of stress. Subjective discomforts reported by 
farmers included high temperature exposure as well as uneven terrain fatigue and pest outbreak uncertainty. 
A robot was designed to perform three basic tasks: 1. Fully autonomous row-inspection vision and thermal sensing, 2. EMG-
assisted tool manipulation (hoeing, light harvesting), 3. Psychological comfort module in real-time (LED adaptive 
communication plus motion-prediction smoothing). The auditing itself reduced average auditing time from 93 minutes to 31 
minutes per hectare by 66%. Also, daily step-counts dropped by around 38% an unequivocal physical relief. "Intuitive" is 
how farmers described the EMG-based control; most of them and especially those with lesser literacy or technological 
backgrounds found this feature seamless. This robot responded to forearm muscle signals with more than 91% accuracy even 
in hot field conditions. 
Surprisingly enough, psychological impact data followed the general trend of HRI research. A stress survey taken two weeks 
after working with the robot indicated a 27% reduction in mental fatigue because of its predictable motion behavior and non-
intrusive proximity management. This is achieved by implementing motion-smoothing algorithms that ensure no abrupt 
turns or sudden acceleration major factors that typically introduce discomfort when working with industrial robots. As 
described by a farmer from Al-Abbasi," the system seems like a cooperative helper rather than a machine." 
In greenhouse environments where heat intensity often reaches 38–46°C the robot performed ventilation-monitoring routines 
and leaf-level imaging to detect early fungal spots. These early detections improved crop health responses by 22% compared 
to manual inspection. Farmers emphasized that the robot’s presence allowed them to avoid uncomfortable temperature 
spikes, a psychological and physical health benefit supported by the measurable reduction in heat-exposure hours. 
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IoT has enabled a connection between farmers and their fields in near real time through a mobile dashboard app that streams 
soil moisture, canopy temperature, and pest alarms. They described it as a "reassurance effect" because knowing that the 
robot was continuously monitoring their fields reduced stress which is normally driven by uncertainty. 
 

9. EXPLORING FARMING IN HAWIJA: A HANDS-ON LAB FOR HUMAN-ROBOT TEAMWORK 

this review shows that agricultural robotics is changing both the face of global food systems and providing region-specific 
routes to sustainability, with an example from Hawija’s agri-context. Advanced robotics together with artificial intelligence 
and principles of IoT sensing enable farm work to move towards resilience, efficiency, and a more human-centered model 
in practice as established through a case study in Hawija. Collaborative robots developed based on psychological comfort 
factors related to interface intuitiveness and adaptive autonomy reduce physical strain while raising farmers’ positive 
emotions and productivity in both open-field and greenhouse environments . 
It throws light on the imperative need for human-robot interaction frameworks of trust, clarity, and non-intrusive 
communication. That would make such empathetic systems required as companions rather than replacements in regions like 
Hawija, where traditional practices, labor shortages, and climatic stressors meet. Robotic platforms understanding local needs 
working safely in unstructured environments offering cognitive and emotional assistance to farmers will entail further 
agricultural development. Embracing this technological transformation as a tool for the betterment of mankind helps sustain 
productivity, sustainability, and human well-being parallelly. 
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