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A B S T R A C T  

The advancement of quantum wave parcels plays a principal part in understanding the behavior of 
quantum particles over time This study numerically reenacts the time dependent Schrödinger condition 
to analyze how wave parcels change under diverse introductory conditions by changing parameters such 
as beginning position wave number and parcel width we investigate the impacts on likelihood thickness 
dissemination The results outline key quantum wonders counting wave bundle spreading position 
vulnerability and obstructions designs The discoveries contribute to a more profound understanding of 
quantum mechanics and can be connected to areas such as quantum optics and molecule physics. 

1. INTRODUCTION 

Quantum mechanics is a fundamental framework governing the behavior of microscopic particles, including electrons, 
photons, and atoms. Unlike classical mechanics, which describes motion deterministically, quantum mechanics introduces 
probabilistic interpretations of physical states. This shift in perspective is essential for modern physics and engineering 
applications [1]. One of the central concepts in quantum mechanics is the wave packet, which represents a localized 
quantum state evolving under the influence of fundamental interactions [2]-[4]. 
Understanding wave packet dynamics is crucial across various domains, including quantum optics, condensed matter 
physics, and quantum computing. In quantum optics, photon wave packets exhibit dispersion and coherence effects, 
impacting quantum communication and cryptography [5]-[7]. In condensed matter physics, electron wave packets play a 
key role in charge transport and quantum materials, influencing the design of nanoscale semiconductor devices [8]-[10]. 
Furthermore, in quantum computing, precise control of wave packets is essential for quantum gates, qubit initialization, 
and entanglement generation [11]-[13]. 
The evolution of quantum wave packets is primarily governed by the principles of superposition and dispersion, leading to 
wave function broadening over time. This phenomenon is critical for understanding how quantum systems transition from 
well-localized to more delocalized states due to their inherent wave-like properties [14]-[16]. Various numerical and 
analytical methods have been developed to investigate wave packet evolution, including finite difference time-domain 
strategies, spectral techniques, and matrix exponentiation approaches [17]-[19]. These techniques provide insight into 
quantum uncertainty, coherence, and the impact of external potentials on quantum states [20]-[23]. 
Recent advancements in quantum technologies have underscored the importance of accurately modeling wave packet 
evolution for practical applications. In quantum computing, wave packet manipulation is vital for error correction and 
quantum information processing [24]-[26]. In semiconductor physics, wave packet analysis aids in understanding electron 
transport in nanoscale materials and devices [27]-[29]. Moreover, the study of matter waves in Bose-Einstein condensates 
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(BECs) has expanded our knowledge of macroscopic quantum phenomena, offering new opportunities for quantum 
simulations [30]-[32]. 
Several experimental and theoretical studies have explored wave packet evolution under different conditions, including 
interactions with external fields, measurement-induced wave function collapse, and quantum tunneling [33]-[35]. The 
interplay between quantum coherence and decoherence further complicates wave packet behavior, particularly in open 
quantum systems where environmental interactions must be considered [36]-[38]. 
This study aims to numerically investigate quantum wave packet evolution by varying initial conditions such as position, 
momentum, and wave packet width. By solving time-dependent quantum dynamics, we examine how different parameters 
influence probability distributions, uncertainty, and quantum coherence. The results contribute to a deeper understanding 
of quantum dynamics and have direct applications in emerging quantum technologies such as quantum sensors, quantum 
information processing, and advanced semiconductor devices [39]-[42]. 
 

2. RELATED WORK  

The study of wave packet evolution in quantum mechanics has been a foundational area of research for decades. Wave 
packets, first introduced by Schrödinger [41], represent the probability distribution of a quantum particle in space and time, 
providing critical insight into quantum dynamics [42]. This section discusses previous work on wave packet evolution and 
compares various numerical approaches with the method employed in this study. 

4.1 Numerical Approaches to Solving the Time-Dependent Schrödinger Equation 

Over the years, several numerical methods have been developed to solve the time-dependent Schrödinger equation (TDSE) 
effectively. Among the widely used techniques are: 

• Finite-Difference Time-Domain Methods: These methods, including the Crank-Nicolson scheme, are known for their 
numerical stability and accuracy in solving partial differential equations [44], [46]. The Crank-Nicolson method, which 
is employed in this study, is particularly advantageous due to its implicit formulation, allowing for stable time evolution 
of wave functions over long durations. 

• Split-Step Fourier Method: This spectral method is highly efficient for solving TDSE in systems with periodic boundary 
conditions or uniform potentials [45]. It provides superior computational performance in simulations of free-space wave 
propagation but may encounter challenges in handling complex potentials or non-periodic domains. 

• Spectral Methods: Advanced spectral methods use basis function expansions for high precision in large-scale quantum 
simulations [46]. While these methods are highly accurate, they require substantial computational resources and may 
not be as practical for systems with irregular potential landscapes. 

• Matrix Exponentiation Techniques: These techniques solve TDSE by directly calculating the evolution operator for the 
wave function. They are particularly effective in small-scale simulations and for systems with constant Hamiltonians, 
though computational costs can rise sharply for larger systems [47]. 

4.2 Applications of Numerical Methods in Quantum Research 

Each of the above approaches has found applications in various fields of quantum research: 
● Quantum Optics: Wave packet evolution has been extensively studied in the context of photon dynamics, where 

numerical methods simulate photon pulse broadening and coherence effects in optical fibers [48], [49]. 
● Condensed Matter Physics: Finite-difference and spectral methods have been instrumental in understanding electron 

wave packets in low-dimensional materials, such as quantum dots, nanowires, and graphene [50], [51]. 
● Bose-Einstein Condensates (BECs): Studies on matter wave dynamics in BECs have benefited from spectral and split-

step methods, enabling the analysis of superfluidity and many-body interactions in optical lattices [53], [54]. 
● Quantum Computing: Numerical techniques play a critical role in designing and optimizing quantum gates and qubit 

coherence by simulating the evolution of quantum wave packets [56], [57]. 

4.3 Comparison with the Current Study 

This study builds on the foundations of the Crank-Nicolson method [44] to provide a robust and stable approach to solving 
the TDSE. Compared to the split-step Fourier method, the Crank-Nicolson approach is better suited for handling non-
uniform potentials and boundary conditions, which are critical in real-world quantum systems [44], [46]. Additionally, the 
study validates its numerical results against analytical predictions, ensuring consistency with theoretical expectations and 
showcasing the method's reliability for long-term simulations. 
Unlike matrix exponentiation techniques, the Crank-Nicolson method offers a balance between computational efficiency 
and accuracy, making it a more versatile choice for simulating wave packet dynamics across various applications [47]. 
Furthermore, this study extends prior work by integrating uncertainty analysis and expectation value calculations, providing 
deeper insights into quantum coherence and delocalization phenomena [11], [29]. 

4.4 Future Directions in Numerical Techniques 

Recent advances in machine learning have opened new avenues for predictive modeling in quantum systems. Integrating 
machine learning with traditional numerical methods could enhance the efficiency and scalability of wave packet 
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simulations, particularly for high-dimensional quantum systems [63], [64]. Additionally, exploring nonlinear wave packet 
dynamics and their interaction with external potentials, such as harmonic oscillators and quantum barriers, could provide 
further insights into quantum tunneling and bound states [58], [60],[65]. 
 

3. DATA AND METHODOLOGY 

3.1 Data 

In this study, we utilize numerical simulations to create and analyze quantum wave parcel advancement. The data comprises 
discrete spatial and temporal values that represent the evolution of wave functions, which are computed utilizing the time-
dependent Schrödinger’s condition TDSE. The dataset includes: 
● Spatial domain: The computational space is characterized by the range 𝑥 ∈ (−10,10) over which the run is discretized 

into 500 grid points for numerical accuracy. 
● Temporal domain: Wave parcel advancement is simulated for different time steps covering short-term and long-term 

proliferation  
● Starting conditions: The study considers distinctive beginning values for: 

4.5 Initial position                 𝑥0 ∈ [−2,2] 
4.6 Initial momentum                    𝑘0 ∈ [3,7] 
4.7 Wave packet width                   𝜎 ∈ [0.8,1.5] 

The primary data collected includes: 
● Wave function values 𝛹(𝑥, 𝑡) at different time intervals. 
● Probability density distributions 𝑃(𝑥, 𝑡) = |𝛹(𝑥, 𝑡)|2 to analyze quantum behavior. 
● Expectation values of position and momentum, obtained using: 

⟨𝑥⟩ = ∫  𝑥𝑃(𝑥, 𝑡)𝑑𝑥, ⟨𝑝⟩ = −𝑖ℏ ∫  𝛹∗
𝜕𝛹

𝜕𝑥
𝑑𝑥                                                 (1) 

● Uncertainty calculations, including: 

𝜎𝑥(𝑡) = √⟨𝑥2⟩ − ⟨𝑥⟩2                                                                                              (2) 
All numerical reenactments are conducted utilizing Python, actualizing ghastly and limited distinction numerical strategies. 
The results are approved against analytical solutions to guarantee accuracy Data visualization includes: 

3.2 Schrödinger’s Equation 

The numerical approach to analyzing quantum wave packet evolution involves solving the time-dependent Schrödinger 
equation (TDSE), which is given by: 

𝑖ℏ
𝜕

𝜕𝑡
𝛹(𝑥, 𝑡) = −

ℏ2

2𝑚

𝜕2

𝜕𝑥2
𝛹(𝑥, 𝑡)                                                                             (3) 

Where: 
● 𝛹(𝑥, 𝑡) is the wave function, 
● ℏ is the reduced Planck's constant, 
● 𝑚 is the mass of the particle. 

3.2.1. Numerical Solution Approach 

We use the Crank-Nicolson method, a stable and accurate finite-difference approach, to solve the TDSE. The discretized 
form of the equation is expressed as: 

𝛹𝑛+1 − 𝛹𝑛

𝛥𝑡
=

𝑖ℏ

2𝑚

𝜕2

𝜕𝑥2
(𝛹𝑛+1 + 𝛹𝑛)                                                                         (4) 

Which can be rewritten in matrix form as: 
(1 + 𝑖𝜆𝐴)𝛹𝑛+1 = (1 − 𝑖𝜆𝐴)𝛹𝑛                                                                                   (5) 

Where 𝐴 represents the second derivative finite-difference matrix, and 𝜆 =
ℏ𝛥𝑡

2𝑚𝛥𝑥2. 

3.2.2. Wave Packet Initialization 
The initial wave packet is defined using a Gaussian function: 

𝛹(𝑥, 0) = (
1

2𝜋𝜎2
)

1
4

𝑒𝑥𝑝 𝑒𝑥𝑝 (−
(𝑥 − 𝑥0)2

4𝜎2
+ 𝑖𝑘0𝑥)                                                      (6) 

Where: 
● 𝑥0 is the initial position, 
● 𝑘0 is the wave number related to momentum 𝑝0 = ℏ𝑘0, 
● 𝜎 is the wave packet width. 

3.2.3. Probability Density and Expectation Values 

The probability density function is calculated as: 
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𝑃(𝑥, 𝑡) = |𝛹(𝑥, 𝑡)|2                                                                                     (7) 
To analyze wave packet evolution, the expectation values of position and momentum are computed as: 

⟨𝑥⟩ = ∫  𝑥𝑃(𝑥, 𝑡)𝑑𝑥, ⟨𝑝⟩ = −𝑖ℏ ∫  𝛹∗
𝜕𝛹

𝜕𝑥
𝑑𝑥                                  (8) 

3.4. Wave Packet Spreading and Uncertainty Analysis 

The standard deviation of position, representing wave packet spreading, is given by: 

𝜎𝑥(𝑡) = √⟨𝑥2⟩ − ⟨𝑥⟩2                                                                          (9) 
The theoretical expectation for wave packet broadening due to dispersion follows: 

𝜎𝑥(𝑡) = 𝜎√1 + (
ℏ𝑡

2𝑚𝜎2
)

2

                                                               (10) 

Which is used to compare numerical results with analytical predictions. 
 

4. RESULT 

The numerical simulations effectively illustrate the evolution of a quantum wave packet over time. The results confirm 
expected wave packet behavior, demonstrating their natural tendency to spread due to quantum uncertainty and wave-like 
properties. 

4.1 Wave Packet Evolution and Quantum Uncertainty 

At initial time steps, the wave packet remains well-localized around its starting position, as indicated by a sharp peak in 
the probability density function. Over time, the wave packet gradually broadens, leading to a reduction in the peak 
probability density. This spreading effect aligns with quantum uncertainty principles, reinforcing the inherent 
delocalization of quantum states in free space. The numerical results closely follow theoretical predictions, validating the 
Crank-Nicolson method as an effective approach for modeling time-dependent quantum evolution. 

 
Fig. 1: Probability density function of the quantum wave packet at different time steps. The peak probability density decreases over time, illustrating the 

natural spreading of the wave packet due to quantum evolution. 

The broadening of the wave packet is directly related to quantum uncertainty, where the position uncertainty grows over 
time. This effect is fundamental to wave mechanics and influences various quantum applications, particularly in quantum 
information processing and semiconductor physics. To quantitatively assess the spread of the wave packet, we analyze the 
time evolution of the uncertainty in position (σ). 
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Fig. 2: Wave packet broadening as a function of time. The uncertainty in position increases over time, demonstrating quantum delocalization and the 

role of wave dispersion in free-space propagation. 

4.2 Implications for Quantum Computing 

The findings have significant implications for quantum computing, where the precise control of quantum states is essential 
for quantum gate operations, qubit stability, and error correction protocols. The study highlights how wave packet spreading 
affects coherence, which is critical for maintaining entanglement in quantum circuits. The ability to numerically simulate 
quantum wave packets enables the refinement of qubit initialization and manipulation strategies, improving quantum 
algorithm efficiency and fault tolerance. 

4.3 Relevance to Quantum Optics 

In quantum optics, the results demonstrate parallels between the evolution of photon wave packets and matter waves. The 
observed wave packet dispersion is analogous to photon pulse broadening in optical fibers, influencing applications in 
quantum communication and cryptography. Understanding wave packet behavior enhances our ability to optimize quantum 
information transfer in fiber-optic systems and free-space quantum communication networks. 

4.4 Impact on Condensed Matter Physics 

The study also provides insights into electron transport in low-dimensional materials, a key aspect of condensed matter 
physics. Wave packet dynamics are crucial in semiconductor nanostructures, where electron coherence influences device 
performance. The findings contribute to understanding charge mobility in materials such as quantum dots, nanowires, and 
graphene, where quantum confinement effects play a significant role. Additionally, the study of wave packet evolution 
under different potential landscapes can aid in designing novel quantum materials and electronic devices. 

4.5 Numerical Accuracy and Stability 

The Crank-Nicolson method proved highly effective in capturing quantum dynamics with high stability and precision. The 
computed expectation values for position and energy remained consistent over time, further confirming the numerical 
approach's robustness. Heatmap visualizations of model accuracy across different time steps revealed stable results, 
demonstrating the feasibility of long-term quantum simulations. 
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Fig. 3: Heatmap representation of numerical accuracy across space and time. The model maintains high accuracy throughout the simulation, supporting 

the effectiveness of the Crank-Nicolson method for long-term quantum evolution calculations. 

 

  

  



 

 

101 Adamopoulos et al, Vol. (2024), 2024, pp 95–104 

  

  

  
Fig. 4 Show Wave Packet evaluation at times. 

5. DISSOCIATION 

The results obtained from the numerical simulations align well with theoretical expectations regarding quantum wave 
packet evolution. At initial time steps, the wave packet remains well-localized, exhibiting a high peak in probability density. 
This behavior is consistent with the fact that the particle's position is relatively well-defined at the start of the simulation. 
As time progresses, the wave packet gradually spreads, leading to a reduction in peak probability density and an increase 
in overall spatial dispersion. The observed dispersion effect is a fundamental characteristic of quantum mechanics, 
illustrating how free-particle wave packets evolve. This spreading behavior is directly linked to quantum uncertainty, where 
the certainty in position decreases as the wave packet expands. The numerical results confirm that the wave packet follows 
expected quantum behavior, reinforcing the principle that wave functions inherently delocalize as time progresses. 
The accuracy of the numerical results was evaluated by comparing the computed wave packet spreading with theoretical 
predictions. The agreement between the simulated and analytical results validates the effectiveness of the Crank-Nicolson 
method in solving the time-dependent Schrödinger equation. The computed expectation values for position and energy 
remained stable over time, further confirming the robustness and precision of the numerical approach. The accuracy 
heatmap provides additional insights into model performance across different time steps. The visualization reveals 
variations in model accuracy, with certain simulations maintaining consistently high precision while others exhibit 
fluctuations. This highlights the importance of selecting appropriate numerical methods for simulating quantum dynamics. 
The results demonstrate that numerical accuracy can be preserved over multiple time steps, making the chosen approach 
suitable for long-term quantum simulations. These findings have significant implications for quantum computing, quantum 
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information processing, and fundamental physics research. Understanding wave packet evolution is crucial for developing 
advanced quantum algorithms, where coherent state control is essential. 
Additionally, the ability to accurately simulate wave packet behavior is valuable for studying electron transport in 
nanostructures and quantum optics applications. Future research can explore the effects of different potential landscapes, 
such as harmonic oscillators and quantum barriers, on wave packet evolution. Investigating interactions between multiple 
wave packets may provide further insights into quantum entanglement and superposition principles. Expanding this 
research to higher-dimensional quantum systems could also enhance our understanding of complex quantum dynamics and 
their practical applications. 
 

6. CONCLUSION   

This study presented a numerical approach to analyzing quantum wave packet evolution using the time-dependent 

Schrödinger equation. The results confirmed the theoretical expectations of wave packet spreading due to quantum 

uncertainty and dispersion. The simulations demonstrated how the wave function evolves, becoming increasingly 

delocalized, which aligns with the fundamental principles of quantum mechanics. The Crank-Nicolson method proved to 

be a highly effective numerical approach for solving the Schrödinger equation, providing stable and accurate results. The 

comparison of numerical data with analytical predictions validated the precision of the method and confirmed its suitability 

for long-term quantum simulations. These findings have significant implications for quantum mechanics applications, 

including quantum computing, optics, and nanotechnology. Understanding wave packet evolution is essential for designing 

quantum information systems and studying charge transport mechanisms in nanoscale materials. Future research should 

explore wave packet dynamics in the presence of external potentials to investigate additional quantum effects such as 

tunneling and bound states. 
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