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A B S T R A C T  

Increasing demand for energy-efficient machine learning models requires optimization strategies that 

minimize computing costs and increase model performance. We use the Coati Optimization Algorithm 

to optimize SVM classifier hyperparameters. Lévy Flight explores, Sine Chaotic Mapping initializes 

populations, and Convex Lens Imaging Reverse Learning accurately searches. Iris dataset model 

accuracy and energy consumption improved with the method. CMRLCCOA balances computational 

economy and model accuracy, making it suited for energy-efficient machine learning.  

CMRLCCOA-based SVM hyperparameter optimization improves exploration and exploitation through 

Sine Chaotic Mapping, Lévy Flight, and Convex Lens Imaging Reverse Learning. Machine learning 

models in resource-constrained situations must maximize accuracy and minimize energy use. We found 

that CMRLCCOA fits these standards. This study demonstrates that CMRLCCOA helps machine 

learning conserve energy while preserving model accuracy. 
CMRLCCOA maximizes energy-efficient hyperparameter optimization by improving functional and 
non-functional SVM hyperparameters.  

1. INTRODUCTION 

Recently, companies using resource-constrained devices and systems have realized the necessity for energy-efficient 

machine learning. Due to its unique accuracy-energy consumption balance, CMRLCCOA is suitable for many applications. 

CMRLCCOA-optimized versions can assist embedded systems and Internet of Things (IoT) devices, which operate on 

restricted power sources and require continuous operation without battery replacement or recharge. Portable diagnostic 

instruments and wearables need low-energy machine learning models to run longer, making CMRLCCOA perfect. 

Hyperparameter optimization is also needed for real-time performance with low energy use in autonomous systems like 

drones and electric vehicles and smart cities, where machine learning models manage energy grids and monitor traffic. 

Energy efficiency makes the algorithm suitable for sustainable AI development, especially for long-term operation and 

environmental impact. These many uses demonstrate CMRLCCOA's versatility in energy-efficient machine learning 

systems [1,2]. 

Machine learning (ML) transformed numerous industries, requiring advanced hyperparameter optimization (HPO) 

methodologies. Classic and alternative HPO methods affect model accuracy, performance, and generalization. Machine 

learning pipeline hyperparameters impact model performance because learning rates, batch sizes, and layer counts affect 

how deep learning models interact with data during training [10,13]. 

Grid and Random Search are common hyperparameter tuning strategies. For complicated models and huge datasets, Grid 

Search evaluates preset hyperparameters but is highly computational due to multiple training iterations. Random Search, 

which selects a defined number of hyperparameter combinations from ranges, frequently beats Grid Search in fewer 
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iterations, particularly when certain hyperparameters are critical. Time and resource constraints make neither technique 

suitable for large datasets or complex models [3,4].  

Parameter optimization reduces processing costs. A probabilistic surrogate model predicts hyperparameter configuration 

performance in Bayesian Optimization, which automatically investigates and refines interesting combinations. Randomized 

and search grids are inefficient. Hyperband streamlines this process by dynamically allocating resources to promising 

configurations and removing unproductive ones. These methods enhance hyperparameter research, notably Random 

Search. Automating choosing models and hyperparameter tweaking using AutoML frameworks makes the process simpler 

for non-experts, while Bayesian and ensemble optimization improve model performance and tuning [5,6]. 

Despite their inefficiency, Grid and Random Search are commonly utilized. Advances like Bayesian Optimization and 

Hyperband improve model performance and optimization, making machine learning technologies simpler to use across 

sectors. These advances may be evaluated in literature reviews and surveys on AI applications and tuning of hyper 

Parameters [7]. 

Metaheuristic optimization addresses complex optimization problems like hyperparameter tuning. Our biologically inspired 

algorithms effectively explore large spaces. Its huge search capabilities and adaptability to many problems situations 

contribute to making the Coati Optimization Algorithm (CMRLCCOA) desirable [8]. 

Central-South American coati foraging inspired CMRLCCOA. Sine Chaotic Mapping initializes, Lévy Flight investigates, 

and Convex Lens Imaging Reverse Learning enhances search accuracy. These traits assist the algorithm avoid local optima 

and identify global optimized solutions. The study optimizes SVM hyperparameters using CMRLCCOA for model 

accuracy and energy efficiency. Energy efficiency is needed to deploy machine learning models in edge devices, embedded 

systems, and other resource-constrained approaches. 

The study uses Coati Optimization Algorithm to tune SVM hyperparameters for energy-efficient machine learning. Results 

demonstrate the method optimizes hyperparameters for accuracy and energy economy. This study utilizes metaheuristic 

approaches to improve real-world machine learning accuracy and optimization.  

This research found that CMRLCCOA outperforms other optimization techniques in machine learning. It improves energy-

efficient machine learning research for greener models. Energy-constrained optimization benefits from Sine Chaotic 

Mapping initialization, Lévy Flight exploration, and Convex Lens Imaging Reverse Learning search. Innovative 

hyperparameter optimization algorithms meet functional and non-functional real-world machine learning model 

deployment requirements. 

This paper's structure continues: Energy-efficient machine learning and hyperparameter tuning are covered in Section 2. 

CMRLCCOA and SVM hyperparameter tweaking are covered in Section 3. Experiments and findings in Section 4 prove 

the approach works. Section 5 wraps up the report and suggests further research. 

 

2. RELATED WORK    

Hyperparameter optimization (HPO) is essential to improving machine learning (ML) models. This article discusses and 

analyzes machine learning hyperparameter optimization strategies from 2020 to 2023. proposed Coati Optimization 

Algorithm (CMRLCCOA). 

2.1 2020 Studies: 

1. Reinforcement Learning for HPO (2020): In this paper, the authors propose a model-based method for efficient 

HPO by framing it as a reinforcement learning problem. An agent tunes hyperparameters sequentially and employs 

a predictive model to speed up training. However, model inaccuracy over time leads to performance collapse. The 

method controls the model’s use by dynamically adjusting the horizon of model usage. This method showed the 

highest accuracy on 86.1% of tasks compared to state-of-the-art methods. However, the method is prone to 

inaccuracies over extended time frames [9]. 

2. Survey of HPO Techniques (2020): This study presents several state-of-the-art optimization techniques for HPO 

and introduces libraries and frameworks developed for this purpose. Scalability and robustness problems are also 

addressed and benchmark dataset trials demonstrate these methods[10]. 

3. Grid, Random, and Bayesian Optimization (2020): The authors assess three HPO methods—grid search, random 

search, and Bayesian optimization (BO)—and apply them to kernel ridge regression in computational chemistry. 

Bayesian optimization proved to be significantly more efficient than exhaustive grid search in terms of 

computational time while maintaining similar or better accuracy [11]. 

4. Parametric Programming for HPO (2020): The HPO problem has been resolved utilizing precise parametric 

programming solutions for linear or quadratic programming models in this study. The authors demonstrate that 

multilevel optimization can solve HPO problems for LASSO regression and L1-norm SVM without 

approximation[12]. 
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2.2 2021 Studies:  

1. Multi-Objective HPO (2021): A. Hernández et al. study multi-objective HPO algorithms that optimize conflicts 

like accuracy and computational cost. Metaheuristic- and metamodel-driven algorithms are distinguished and 

applied to machine learning problems in the study [13]. 

2. Comprehensive Review of HPO Methods (2021): The article includes grid search, evolutionary techniques, and 

Hyperband HPO methods. It provides practical advice on HPO algorithm selection, performance assessment, and 

runtime improvements[14]. 

3. Greedy HPO Algorithm (2021): For speedier training, a greedy approach-based hyperparameter optimization 

(GHO) method is created. The GHO algorithm outperformed state-of-the-art algorithms in computing time and 

energy usage. Post-training quantization reduces inference time and latency in the research[15]. 

4. SMAC3 for Bayesian Optimization (2021): M. Lindauer et al. present SMAC3, a robust Bayesian optimization 

framework that helps users calculate appropriate hyperparameters. Low-dimensional global optimization 

problems and machine learning methods use SMAC3[16]. 

2.3 2023 Studies: 

1. Comparative Study of Metaheuristic Algorithms for HPO (2023): This study compares four techniques for hyper-

tuning SVM computational cost: Ant Bee Colony Algorithm, Genetic Algorithm (GA), Whale Optimization, and 

Particle Swarm Optimization (PSO). GA was found to have the lowest temporal complexity [17]. 

2. Real-World Applications of Metaheuristic and Bayesian Optimization (2023): The paper uses metaheuristic and 

Bayesian optimization on random forests, KNN, and SVM for landslide susceptibility mapping. Bayesian 

approaches beat grid search (GS) and random search (RS), improving KNN and SVM model accuracy by large 

margins[18]. 

Hyperparameter optimization approaches are examined for accuracy and energy efficiency. As shown in Table I: 

Comparison of Hyperparameter Optimization Methods for SVM in Energy-Efficient Machine Learning, CMRLCCOA 

beats Reinforcement Learning, Grid Search, and Random Search. CMRLCCOA's Sine Chaotic Mapping, Lévy Flight, and 

Convex Lens Imaging Reverse Learning framework lets hyperparameters be optimized with low energy usage and great 

model accuracy. 

TABLE I. COMPARISON OF HYPERPARAMETER OPTIMIZATION METHODS FOR SVM IN ENERGY-EFFICIENT MACHINE LEARNING 

Study Method Advantages Limitations Comparison with CMRLCCOA 

2020 

(Reinforcement 

Learning) 

Reinforcement 
Learning 

High accuracy (86.1%), 

predictive model speeds 

up training 

Model inaccuracy over 
long-term use 

CMRLCCOA focuses on consistent 
accuracy without model collapse over time 

2020 (Survey) 
State-of-the-art 

techniques 

Provides various libraries 

and frameworks for HPO 
Scalability challenges 

CMRLCCOA integrates chaotic mapping 
and Lévy Flight for improved scalability and 

robustness 

2020 (Grid, 
Random, 

Bayesian) 

Grid Search, Random 
Search, Bayesian 

Optimization 

BO is efficient in time and 

accuracy 

Grid search is 
computationally 

expensive 

CMRLCCOA is more efficient in 

exploration with its integrated strategies 

2020 
(Parametric 

Programming) 

Exact solutions via 
parametric 

programming 

Bilevel optimization offers 

exact solutions 

Limited to LP/QP 

models 

CMRLCCOA can be applied to a broader 

range of machine learning models 

2021 (Multi-

Objective 
HPO) 

Metaheuristic and 

Metamodel-based 

Balances conflicting 

objectives (e.g., accuracy, 
cost) 

Complex 

implementation 

CMRLCCOA balances exploration and 

exploitation with chaotic mapping and 
convex lens learning 

2021 (GHO) Greedy HPO 
Faster training, reduced 

energy consumption 

Limited to specific 

applications (on-the-fly 
training) 

CMRLCCOA offers generalized efficiency 

across various applications 

2021 (SMAC3) Bayesian Optimization 
Robust framework, 

flexible use 

Limited to Bayesian 

optimization methods 

CMRLCCOA incorporates multiple 

strategies, offering more flexibility 

2023 
(Metaheuristic) 

Ant Bee, GA, Whale, 
PSO 

GA has the lowest 
temporal complexity 

Varies in performance 
across tasks 

CMRLCCOA offers consistently good 
performance with SVM and beyond 

2023 

(Metaheuristic 

and Bayesian) 

Metaheuristic and 
Bayesian Optimization 

Enhanced accuracy of 
KNN and SVM 

May require extensive 

computational 

resources 

CMRLCCOA reduces computational cost 
while maintaining accuracy 

 

3. THE PROPOSED METHOD  

This work optimizes Support Vector Machine (SVM) hyperparameters using the Coati Optimization Algorithm 

(CMRLCCOA) to balance model accuracy and energy usage. CMRLCCOA uses Sine Chaotic Mapping for heterogeneous 

population initialization, Lévy Flight for search space exploration, and Convex Lens Imaging Reverse Learning for search 

accuracy. The algorithm avoids local optima and discovers globally optimal solutions with these qualities. Figure 1 shows 
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the suggested method's block diagram, while Tables 2, 3, and 4 provide the algorithms, input parameters, and output 

parameters. 

 

 
Fig. 1. The Block Diagram of the Proposed Method. 

3.1 Proposed method steps: 

1. Define the SVM classifier hyperparameter optimization issue. 

2. Start the population with Sine Chaotic Mapping. 

3. Use the objective function to assess the initial population's fitness. 

4. Explore the search space with Lévy Flight. 

5. Improve solutions using Convex Lens Imaging Reverse Learning. 

6. Update the optimal optimization method. 

7. Repeat steps 3–6 until convergence or maximum iterations. 

8. Store optimum hyperparameters and model metrics. 

TABLE II. ALGORITHMS USED 

Algorithm Description 

Sine Chaotic Map Initialization Initializes the population with diverse solutions. 

Lévy Flight 
Provides a random walk that helps in effectively exploring the 

search space. 

Convex Lens Imaging Reverse Learning Expands the search range and improves search capabilities. 

Coati Optimization Algorithm (CMRLCCOA) 
Solves complex problems by mimicking the foraging behavior of 

coatis. 

TABLE III. INPUT PARAMETERS 

 

 

 

 

 
TABLE IV. OUTPUT PARAMETERS 

 

 

 

 

 

a. Functional requirements: 

• Optimize SVM hyperparameters for highest accuracy and minimal consumption of energy. 

• Ensure convergence within a specified number of iterations. 

b. Non-functional requirements: 

• The algorithm should run within a reasonable time frame. 

Parameter Lower Bound Upper Bound Population Size Max Iterations 

C (Cost) 0 100 30 100 

Gamma 0.1 1   

Epsilon 0.0001 1   

     

Parameter Best Value Best Fitness 

C 0 -0.9578041536846986 

Gamma 0.1  

Epsilon 1  
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• The implementation should be memory efficient. 

3.2 Potential Application Fields: 

The CMRLCCOA is highly applicable to various real-world scenarios where both functional and non-functional 

requirements must be met. For example: 

1. Healthcare Devices: Portable diagnostic equipment, wearables, and other healthcare technology need energy-efficient 

machine learning models to monitor and diagnose patients accurately and keep batteries alive. 

2. Environmental Monitoring: Hyperparameters are optimized for a low-energy utilization by CMRLCCOA for remote, 

sustainable temperature or pollution sensor operations. 

3. Smart Cities: Power and performance must be balanced in smart grid, traffic management, and energy distribution 

machine learning models. CMRLCCOA optimizes computational and energy efficiency for various applications. 

4. Autonomous Systems: Drones, electric automobiles, and robots navigate and decide using real-time machine learning. 

Ideal for resource-constrained autonomous systems, CMRLCCOA optimises these models for real-time speed and 

minimal computation energy. 

Sustainable AI applications may use CMRLCCOA due to how it tackles both functional (optimizing accuracy and energy 

use) and non-functional (memory efficiency and rapid convergence) problems. 

 

4. RESULTS AND DISCUSSIONS 

Optimization showed the CMRLCCOA enhanced model accuracy and energy savings. It combines these objectives, which 

makes it perfect for energy-efficient machine learning.  

SVM hyperparameters were tuned by CMRLCCOA for model accuracy and energy consumption. 
TABLE V. HYPERPARAMETER OPTIMIZATION RESULTS 

 
Algorithm Best C Best Gamma Best Fitness 

Coati Optimization Algorithm 
(CMRLCCOA) 

30.00778802 0.063843902 -0.959639969 

Random Search 1.131314132 0.726713511 -0.851654774 

Grid Search 1 0.1 -0.920685282 

 

Table 5 shows hyperparameter optimization results via CMRLCCOA, Random Search, and Grid Search. 

 

4.1 Coati Optimization Algorithm (CMRLCCOA) 

• Best C: 30.00778802 

• Best Gamma: 0.063843902 

• Best Fitness: -0.959639969 

Fitness score was greatest for CMRLCCOA, -0.9596. It measures simulation energy usage and model accuracy (negative 

sign indicates maximizing). A perfect hyperparameter combination (C = 30 and Gamma = 0.064) gave CMRLCCOA the 

best accuracy and energy utilization. 

4.2 Random Search 

• Best C: 1.131314132 

• Best Gamma: 0.726713511 

• Best Fitness: -0.851654774 

Optimization basics Random Search picked hyperparameters randomly and got -0.8517 fitness. Without accuracy-energy 

efficiency balancing, Random Search scores lower than CMRLCCOA. The optimal parameters (C = 1.13 and Gamma ≈ 

0.73) vary considerably from CMRLCCOA, suggesting that Random Search's lack of strategic investigation leads to 

incorrect conclusions in complex optimization scenarios. 

4.3 Grid Search 

• Best C: 1 

• Best Gamma: 0.1 

• Best Fitness: -0.920685282 

Grid Search has a fitness score of -0.9207, better than Random Search but below CMRLCCOA. Grid Search beats Random 

Search but examines selected hyperparameters, unlike CMRLCCOA. The optimal Grid Search settings (C = 1, Gamma = 

0.1) demonstrate its methodical approach, yet discrete search space exploration can overlook optimum values. 

The Coati Optimization Algorithm Surpassed Grid Search and Random Search in fitness. This optimization job benefits 

from its adaptive search space exploration and exploit.  
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Random Search, the least effective but simplest technique, lacks directionality and may miss significant parts of the search 

space, particularly in complex or high-dimensional situations. Grid Search performed better but was limited by its 

predetermined grid, which may disregard superior parameter combinations. 

Complex optimization problems that balance accuracy and energy consumption benefit from advanced metaheuristic 

algorithms like CMRLCCOA. Metaheuristic algorithms optimize effectively when computer resources are limited and 

exhaustive searches are impossible. Compare CMRLCCOA to Bayesian Optimization or Genetic Algorithms to 

demonstrate its applicability. 

 

5. CONCLUSION 

In hyperparameter optimization fitness value, CMRLCCOA beat Grid Search and Random Search. CMRLCCOA must 

balance model accuracy with energy use for resource-constrained machine learning model deployment. The software 

adaptively explored and utilized the search space to identify a high-performance, low-energy hyperparameter.  

Simple Grid Search and Random Search suffered in hyperparameter space. Random Search overlooked good sites and 

performed badly due to lax inquiry. Grid Search was more methodical, although its predetermined grid may have missed 

the ideal parameter space. 

CMRLCCOA and other strong metaheuristic algorithms excel at difficult optimization problems with numerous objectives 

including accuracy and energy efficiency. In many optimization situations, CMRLCCOA might be compared to Bayesian 

or Genetic Algorithms. These results show that CMRLCCOA may be utilized for energy-efficient machine learning and 

sustainable AI. 
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