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gﬁ;);ﬁ]g]com Sine Chaotic Mapping, Lévy Flight, and Convex Lens Imaging Reverse Learning. Machine learning

models in resource-constrained situations must maximize accuracy and minimize energy use. We found
that CMRLCCOA fits these standards. This study demonstrates that CMRLCCOA helps machine
Hyperparameter learning conserve energy while preserving model accuracy.

optimization, CMRLCCOA maximizes energy-efficient hyperparameter optimization by improving functional and
non-functional SVM hyperparameters.
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Machines (SVM),

machine learning.

1. INTRODUCTION

Recently, companies using resource-constrained devices and systems have realized the necessity for energy-efficient
machine learning. Due to its unique accuracy-energy consumption balance, CMRLCCOA is suitable for many applications.
CMRLCCOA-optimized versions can assist embedded systems and Internet of Things (IoT) devices, which operate on
restricted power sources and require continuous operation without battery replacement or recharge. Portable diagnostic
instruments and wearables need low-energy machine learning models to run longer, making CMRLCCOA perfect.
Hyperparameter optimization is also needed for real-time performance with low energy use in autonomous systems like
drones and electric vehicles and smart cities, where machine learning models manage energy grids and monitor traffic.
Energy efficiency makes the algorithm suitable for sustainable Al development, especially for long-term operation and
environmental impact. These many uses demonstrate CMRLCCOA's versatility in energy-efficient machine learning
systems [1,2].

Machine learning (ML) transformed numerous industries, requiring advanced hyperparameter optimization (HPO)
methodologies. Classic and alternative HPO methods affect model accuracy, performance, and generalization. Machine
learning pipeline hyperparameters impact model performance because learning rates, batch sizes, and layer counts affect
how deep learning models interact with data during training [10,13].

Grid and Random Search are common hyperparameter tuning strategies. For complicated models and huge datasets, Grid
Search evaluates preset hyperparameters but is highly computational due to multiple training iterations. Random Search,
which selects a defined number of hyperparameter combinations from ranges, frequently beats Grid Search in fewer
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iterations, particularly when certain hyperparameters are critical. Time and resource constraints make neither technique
suitable for large datasets or complex models [3,4].

Parameter optimization reduces processing costs. A probabilistic surrogate model predicts hyperparameter configuration
performance in Bayesian Optimization, which automatically investigates and refines interesting combinations. Randomized
and search grids are inefficient. Hyperband streamlines this process by dynamically allocating resources to promising
configurations and removing unproductive ones. These methods enhance hyperparameter research, notably Random
Search. Automating choosing models and hyperparameter tweaking using AutoML frameworks makes the process simpler
for non-experts, while Bayesian and ensemble optimization improve model performance and tuning [5,6].

Despite their inefficiency, Grid and Random Search are commonly utilized. Advances like Bayesian Optimization and
Hyperband improve model performance and optimization, making machine learning technologies simpler to use across
sectors. These advances may be evaluated in literature reviews and surveys on Al applications and tuning of hyper
Parameters [7].

Metaheuristic optimization addresses complex optimization problems like hyperparameter tuning. Our biologically inspired
algorithms effectively explore large spaces. Its huge search capabilities and adaptability to many problems situations
contribute to making the Coati Optimization Algorithm (CMRLCCOA) desirable [8].

Central-South American coati foraging inspired CMRLCCOA. Sine Chaotic Mapping initializes, Lévy Flight investigates,
and Convex Lens Imaging Reverse Learning enhances search accuracy. These traits assist the algorithm avoid local optima
and identify global optimized solutions. The study optimizes SVM hyperparameters using CMRLCCOA for model
accuracy and energy efficiency. Energy efficiency is needed to deploy machine learning models in edge devices, embedded
systems, and other resource-constrained approaches.
The study uses Coati Optimization Algorithm to tune SVM hyperparameters for energy-efficient machine learning. Results
demonstrate the method optimizes hyperparameters for accuracy and energy economy. This study utilizes metaheuristic
approaches to improve real-world machine learning accuracy and optimization.
This research found that CMRLCCOA outperforms other optimization techniques in machine learning. It improves energy-
efficient machine learning research for greener models. Energy-constrained optimization benefits from Sine Chaotic
Mapping initialization, Lévy Flight exploration, and Convex Lens Imaging Reverse Learning search. Innovative
hyperparameter optimization algorithms meet functional and non-functional real-world machine learning model
deployment requirements.

This paper's structure continues: Energy-efficient machine learning and hyperparameter tuning are covered in Section 2.
CMRLCCOA and SVM hyperparameter tweaking are covered in Section 3. Experiments and findings in Section 4 prove
the approach works. Section 5 wraps up the report and suggests further research.

2. RELATED WORK

Hyperparameter optimization (HPO) is essential to improving machine learning (ML) models. This article discusses and
analyzes machine learning hyperparameter optimization strategies from 2020 to 2023. proposed Coati Optimization
Algorithm (CMRLCCOA).

2.1 2020 Studies:

1. Reinforcement Learning for HPO (2020): In this paper, the authors propose a model-based method for efficient
HPO by framing it as a reinforcement learning problem. An agent tunes hyperparameters sequentially and employs
a predictive model to speed up training. However, model inaccuracy over time leads to performance collapse. The
method controls the model’s use by dynamically adjusting the horizon of model usage. This method showed the
highest accuracy on 86.1% of tasks compared to state-of-the-art methods. However, the method is prone to
inaccuracies over extended time frames [9].

2. Survey of HPO Techniques (2020): This study presents several state-of-the-art optimization techniques for HPO
and introduces libraries and frameworks developed for this purpose. Scalability and robustness problems are also
addressed and benchmark dataset trials demonstrate these methods[10].

3. Grid, Random, and Bayesian Optimization (2020): The authors assess three HPO methods—qrid search, random
search, and Bayesian optimization (BO)—and apply them to kernel ridge regression in computational chemistry.
Bayesian optimization proved to be significantly more efficient than exhaustive grid search in terms of
computational time while maintaining similar or better accuracy [11].

4. Parametric Programming for HPO (2020): The HPO problem has been resolved utilizing precise parametric
programming solutions for linear or quadratic programming models in this study. The authors demonstrate that
multilevel optimization can solve HPO problems for LASSO regression and Ll-norm SVM without
approximation[12].
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2.2 2021 Studies:

1.

Multi-Objective HPO (2021): A. Hernandez et al. study multi-objective HPO algorithms that optimize conflicts
like accuracy and computational cost. Metaheuristic- and metamodel-driven algorithms are distinguished and
applied to machine learning problems in the study [13].

Comprehensive Review of HPO Methods (2021): The article includes grid search, evolutionary techniques, and
Hyperband HPO methods. It provides practical advice on HPO algorithm selection, performance assessment, and
runtime improvements[14].

Greedy HPO Algorithm (2021): For speedier training, a greedy approach-based hyperparameter optimization
(GHO) method is created. The GHO algorithm outperformed state-of-the-art algorithms in computing time and
energy usage. Post-training quantization reduces inference time and latency in the research[15].

SMACS3 for Bayesian Optimization (2021): M. Lindauer et al. present SMACS3, a robust Bayesian optimization
framework that helps users calculate appropriate hyperparameters. Low-dimensional global optimization
problems and machine learning methods use SMAC3[16].

2.3 2023 Studies:

1.

Comparative Study of Metaheuristic Algorithms for HPO (2023): This study compares four techniques for hyper-
tuning SVM computational cost: Ant Bee Colony Algorithm, Genetic Algorithm (GA), Whale Optimization, and
Particle Swarm Optimization (PSO). GA was found to have the lowest temporal complexity [17].

Real-World Applications of Metaheuristic and Bayesian Optimization (2023): The paper uses metaheuristic and
Bayesian optimization on random forests, KNN, and SVM for landslide susceptibility mapping. Bayesian
approaches beat grid search (GS) and random search (RS), improving KNN and SVM model accuracy by large
margins[18].

Hyperparameter optimization approaches are examined for accuracy and energy efficiency. As shown in Table I:
Comparison of Hyperparameter Optimization Methods for SVM in Energy-Efficient Machine Learning, CMRLCCOA
beats Reinforcement Learning, Grid Search, and Random Search. CMRLCCOA's Sine Chaotic Mapping, Lévy Flight, and
Convex Lens Imaging Reverse Learning framework lets hyperparameters be optimized with low energy usage and great
model accuracy.

TABLE I. COMPARISON OF HYPERPARAMETER OPTIMIZATION METHODS FOR SVM IN ENERGY-EFFICIENT MACHINE LEARNING

Study Method Advantages Limitations Comparison with CMRLCCOA
i 0,
(Reinigrzc%ment Reinforcement F:L%T;f\f:ﬁ%élsgtggs Model inaccuracy over CMRLCCOA focuses on consistent
: Learning P 00e! sp long-term use accuracy without model collapse over time
Learning) up training

2020 (Survey)

State-of-the-art
techniques

Provides various libraries
and frameworks for HPO

Scalability challenges

CMRLCCOA integrates chaotic mapping
and Lévy Flight for improved scalability and
robustness

energy consumption

training)

2020 (Grid, Grid Search, Random e Grid search is . S
Random, Search, Bayesian BO is efficient in time and computationally CMR_LCCQA_ls more efficient in )
- A accuracy - exploration with its integrated strategies
Bayesian) Optimization expensive
2020 . Exact solutlons via Bilevel optimization offers Limited to LP/QP CMRLCCOA can be applied to a broader
(Parametric parametric . . :
- - exact solutions models range of machine learning models
Programming) programming
2021_ (M_ultl- Metaheuristic and _Bal_ances conflicting Complex CMRI__C<_:OA l_JaIances _explorat_lon and
Objective objectives (e.g., accuracy, . - exploitation with chaotic mapping and
Metamodel-based implementation -
HPO) cost) convex lens learning
L Limited to specific . -
2021 (GHO) Greedy HPO Faster training, reduced applications (on-the-fly CMRLCCOA offers generalized efficiency

across various applications

2021 (SMAC3)

Bayesian Optimization

Robust framework,
flexible use

Limited to Bayesian
optimization methods

CMRLCCOA incorporates multiple
strategies, offering more flexibility

2023
(Metaheuristic)

Ant Bee, GA, Whale,
PSO

GA has the lowest
temporal complexity

Varies in performance
across tasks

CMRLCCOA offers consistently good
performance with SVM and beyond

2023
(Metaheuristic
and Bayesian)

Metaheuristic and
Bayesian Optimization

Enhanced accuracy of
KNN and SVM

May require extensive
computational
resources

CMRLCCOA reduces computational cost
while maintaining accuracy

3. THE PROPOSED METHOD

This work optimizes Support Vector Machine (SVM) hyperparameters using the Coati Optimization Algorithm
(CMRLCCOA) to balance model accuracy and energy usage. CMRLCCOA uses Sine Chaotic Mapping for heterogeneous
population initialization, Lévy Flight for search space exploration, and Convex Lens Imaging Reverse Learning for search
accuracy. The algorithm avoids local optima and discovers globally optimal solutions with these qualities. Figure 1 shows
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the suggested method's block diagram, while Tables 2, 3, and 4 provide the algorithms, input parameters, and output
parameters.

Dataset

Process 1
(Optimization)

Optimized
Parameters

Process 2 &
(Model Training) 0, "

Data

e
Data @
Store 2

Final Qutput

Fig. 1. The Block Diagram of the Proposed Method.
3.1 Proposed method steps:

1. Define the SVM classifier hyperparameter optimization issue.
Start the population with Sine Chaotic Mapping.

Use the objective function to assess the initial population's fitness.
Explore the search space with Lévy Flight.

Improve solutions using Convex Lens Imaging Reverse Learning.
Update the optimal optimization method.

Repeat steps 3—6 until convergence or maximum iterations.

Store optimum hyperparameters and model metrics.

TABLE Il. ALGORITHMS USED

AN RN

Algorithm
Sine Chaotic Map Initialization

Description
Initializes the population with diverse solutions.
Provides a random walk that helps in effectively exploring the
search space.
Expands the search range and improves search capabilities.
Solves complex problems by mimicking the foraging behavior of
coatis.

Lévy Flight

Convex Lens Imaging Reverse Learning

Coati Optimization Algorithm (CMRLCCOA)

TABLE I1l. INPUT PARAMETERS

a. Functional requirements:

Parameter Lower Bound Upper Bound Population Size Max Iterations
C (Cost) 0 100 30 100
Gamma 0.1 1
Epsilon 0.0001 1

TABLE IV. OUTPUT PARAMETERS
Parameter Best Value Best Fitness
C 0 -0.9578041536846986
Gamma 0.1
Epsilon 1

e Optimize SVM hyperparameters for highest accuracy and minimal consumption of energy.
e Ensure convergence within a specified number of iterations.

b. Non-functional requirements:
e The algorithm should run within a reasonable time frame.
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e The implementation should be memory efficient.

3.2 Potential Application Fields:

The CMRLCCOA is highly applicable to various real-world scenarios where both functional and non-functional

requirements must be met. For example:

1. Healthcare Devices: Portable diagnostic equipment, wearables, and other healthcare technology need energy-efficient
machine learning models to monitor and diagnose patients accurately and keep batteries alive.

2. Environmental Monitoring: Hyperparameters are optimized for a low-energy utilization by CMRLCCOA for remote,
sustainable temperature or pollution sensor operations.

3. Smart Cities: Power and performance must be balanced in smart grid, traffic management, and energy distribution
machine learning models. CMRLCCOA optimizes computational and energy efficiency for various applications.

4. Autonomous Systems: Drones, electric automobiles, and robots navigate and decide using real-time machine learning.
Ideal for resource-constrained autonomous systems, CMRLCCOA optimises these models for real-time speed and
minimal computation energy.

Sustainable Al applications may use CMRLCCOA due to how it tackles both functional (optimizing accuracy and energy

use) and non-functional (memory efficiency and rapid convergence) problems.

4. RESULTS AND DISCUSSIONS

Optimization showed the CMRLCCOA enhanced model accuracy and energy savings. It combines these objectives, which
makes it perfect for energy-efficient machine learning.

SVM hyperparameters were tuned by CMRLCCOA for model accuracy and energy consumption.
TABLE V. HYPERPARAMETER OPTIMIZATION RESULTS

Algorithm Best C Best Gamma Best Fitness
Coati Optimization Algorithm
(CMRLCCOA) 30.00778802 0.063843902 -0.959639969
Random Search 1.131314132 0.726713511 -0.851654774
Grid Search 1 0.1 -0.920685282

Table 5 shows hyperparameter optimization results via CMRLCCOA, Random Search, and Grid Search.

4.1 Coati Optimization Algorithm (CMRLCCOA)

e Best C: 30.00778802

o Best Gamma: 0.063843902

o Best Fitness: -0.959639969
Fitness score was greatest for CMRLCCOA, -0.9596. It measures simulation energy usage and model accuracy (negative
sign indicates maximizing). A perfect hyperparameter combination (C = 30 and Gamma = 0.064) gave CMRLCCOA the
best accuracy and energy utilization.

4.2 Random Search

e Best C: 1.131314132

e Best Gamma: 0.726713511

o Best Fitness: -0.851654774
Optimization basics Random Search picked hyperparameters randomly and got -0.8517 fitness. Without accuracy-energy
efficiency balancing, Random Search scores lower than CMRLCCOA. The optimal parameters (C = 1.13 and Gamma =
0.73) vary considerably from CMRLCCOA, suggesting that Random Search's lack of strategic investigation leads to
incorrect conclusions in complex optimization scenarios.

4.3 Grid Search

e BestC: 1

e Best Gamma: 0.1

o Best Fitness: -0.920685282
Grid Search has a fitness score of -0.9207, better than Random Search but below CMRLCCOA. Grid Search beats Random
Search but examines selected hyperparameters, unlike CMRLCCOA. The optimal Grid Search settings (C = 1, Gamma =
0.1) demonstrate its methodical approach, yet discrete search space exploration can overlook optimum values.
The Coati Optimization Algorithm Surpassed Grid Search and Random Search in fitness. This optimization job benefits
from its adaptive search space exploration and exploit.
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Random Search, the least effective but simplest technique, lacks directionality and may miss significant parts of the search
space, particularly in complex or high-dimensional situations. Grid Search performed better but was limited by its
predetermined grid, which may disregard superior parameter combinations.

Complex optimization problems that balance accuracy and energy consumption benefit from advanced metaheuristic
algorithms like CMRLCCOA. Metaheuristic algorithms optimize effectively when computer resources are limited and
exhaustive searches are impossible. Compare CMRLCCOA to Bayesian Optimization or Genetic Algorithms to
demonstrate its applicability.

5. CONCLUSION

In hyperparameter optimization fitness value, CMRLCCOA beat Grid Search and Random Search. CMRLCCOA must
balance model accuracy with energy use for resource-constrained machine learning model deployment. The software
adaptively explored and utilized the search space to identify a high-performance, low-energy hyperparameter.
Simple Grid Search and Random Search suffered in hyperparameter space. Random Search overlooked good sites and
performed badly due to lax inquiry. Grid Search was more methodical, although its predetermined grid may have missed
the ideal parameter space.

CMRLCCOA and other strong metaheuristic algorithms excel at difficult optimization problems with numerous objectives
including accuracy and energy efficiency. In many optimization situations, CMRLCCOA might be compared to Bayesian
or Genetic Algorithms. These results show that CMRLCCOA may be utilized for energy-efficient machine learning and
sustainable Al.
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