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ABSTRACT

This study aimed to assess the impact of environmental conditions on bridge deterioration by leveraging
a comprehensive dataset comprising 1340 records and 15 variables. The dataset included numeric
variables such as acceleration, temperature, humidity, wind speed, and categorical variables like bridge
and sensor IDs, structural condition, and damage class. Using advanced predictive modeling techniques,
we integrated key environmental variables to enhance the understanding of their influence on structural
integrity.

Our methodology involved analyzing the dataset to identify patterns of bridge deterioration, focusing on
the role of environmental factors as critical determinants of structural health. We employed machine
learning algorithms to forecast deterioration over a 30-day period, utilizing forecast scores as a primary
outcome measure. The results showed a significant correlation between environmental conditions and
bridge degradation, with higher average degradation scores in structures exposed to increased
temperatures (mean 25.186°C), humidity (mean 59.836%), and wind speeds (mean 7.602 m/s).

Bridges classified under "Severe" damage exhibited notably higher forecast scores, indicating
accelerated deterioration compared to those with "Minor" or "No Damage." These findings suggest that
integrating environmental data into predictive models can significantly enhance the accuracy of
deterioration forecasts, aiding in the prioritization of maintenance activities.

Our findings suggest that predictive models incorporating environmental variables offer a robust
framework for infrastructure management. This approach facilitates data-driven decision-making,
enabling more effective maintenance scheduling and resource allocation. Ultimately, the integration of
environmental monitoring into bridge maintenance strategies is crucial for optimizing infrastructure
resilience and longevity in the face of evolving environmental challenges.

1. INTRODUCTION

The deterioration of infrastructure, particularly bridges, poses significant challenges to both safety and economic efficiency
worldwide. As critical components of transportation networks, bridges require continuous monitoring and timely
maintenance to ensure their structural integrity and functionality. Environmental factors, cyclic loads, and age-related
degradation contribute to bridge deterioration, making it imperative to develop reliable predictive models for assessing
their condition. Given the increasing frequency of extreme climatic events and the aging of infrastructure, the need for
advanced methodologies to predict bridge health has never been more urgent.

Despite the critical importance of infrastructure maintenance, the field still grapples with significant gaps in predictive
accuracy and reliability. Current methods often rely on periodic manual inspections that are labor-intensive and may miss
subtle signs of early deterioration. Moreover, traditional models used for deterioration prediction often fail to integrate the
full range of environmental and operational variables that influence bridge health. This research addresses these gaps by

*Corresponding author email: aalhamd.yasser89@gmail.com
DOI: https://doi.org/10.70470/KHWARIZMIA/2025/010



mailto:aalhamd.yasser89@gmail.com
https://doi.org/10.70470/KHWARIZMIA/2025/010
https://peninsula-press.ae
https://peninsula-press.ae/Journals/index.php/KHWARIZMIA
https://orcid.org/0009-0003-3535-1871
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0000-0000-0000
https://creativecommons.org/licenses/by/4.0/

Yasser et al, Vol. (2025), 2025, pp 80-87

developing a comprehensive dataset comprising 1,340 records and 15 variables, including both numeric and categorical
data, to enhance the predictive capabilities of deterioration models.

The objective of this research is to advance the understanding of bridge deterioration processes by integrating a variety of
sensor-derived and environmental variables. The dataset includes numeric variables such as acceleration (along x, y, and z
axes), temperature, humidity, wind speed, and other metrics like fft peak freq and fft magnitude, which capture
vibrational characteristics. Additionally, degradation_score and forecast_score_next 30d offer insights into current and
future deterioration states. Categorical variables like bridge_id, sensor_id, structural_condition, and damage_class help
contextualize the numeric data, enabling a more nuanced analysis of deterioration patterns across different bridge types
and conditions.

The primary research questions guiding this study are: How can multivariate data from sensors and environmental
conditions be effectively integrated to improve bridge deterioration predictions? What role do specific environmental
factors play in accelerating or mitigating deterioration, and how can these insights inform targeted maintenance strategies?
By addressing these questions, this research aims to contribute significantly to the field of infrastructure management.[1]
[2]

The significance of this research lies in its potential to transform how bridge health is monitored and managed. By
leveraging a rich dataset that encompasses both structural and environmental variables, the study seeks to develop more
accurate predictive models. These models can enhance inspection schedules, prioritize maintenance activities, and
ultimately extend the lifespan of critical infrastructure. Additionally, the research provides a framework for integrating
diverse data sources, setting the stage for future advancements in predictive maintenance technologies.[3]

This paper is structured as follows: First, we review the current state of research in bridge deterioration modeling,
highlighting existing methodologies and their limitations. Next, we detail the dataset used in this study, describing the
variables and their relevance to bridge health assessment. The methodology section outlines the analytical techniques
employed to integrate and analyze the data, leading into the results section where key findings are presented. Finally, the
discussion interprets the implications of these findings for infrastructure management and future research directions.
Through this structured approach, the paper aims to provide a comprehensive understanding of bridge deterioration
processes and propose actionable solutions for infrastructure maintenance challenges.[4]

2. LITERATURE REVIEW

The study of bridge deterioration has evolved significantly over the past decades, driven by the increasing necessity for
accurate predictive models that can inform maintenance and management strategies. At the forefront of this evolution are
advanced methodologies that incorporate diverse data sources to enhance the predictive accuracy of bridge health
assessments. This literature review explores key theories, models, and frameworks, synthesizes findings from notable
studies, and identifies gaps and debates within the field to connect with the current research objectives.[5]

Early models of bridge deterioration were primarily deterministic, relying heavily on historical inspection data and expert
judgment. These approaches, while foundational, often lacked precision due to their simplistic treatment of complex
variables affecting bridge health. The advent of probabilistic models marked a significant shift, allowing for the quantitative
incorporation of uncertainty and variability inherent in environmental and operational conditions[6]. Recent advancements
in probabilistic modeling include hierarchical Bayesian frameworks, which enable the fusion of inspection and monitoring
data to produce more nuanced deterioration assessments. These frameworks are particularly adept at capturing the
probabilistic nature of degradation processes, offering a robust alternative to traditional deterministic models.

The integration of machine learning techniques into bridge deterioration modeling represents another pivotal development.
Machine learning models, such as neural networks and decision trees, have been utilized to predict deterioration by
analyzing patterns within large datasets. These models excel in handling complex, nonlinear relationships between
variables, making them suitable for bridge health assessments where multiple interacting factors are at play[7]. The
application of ordinal autoregressive models further enhances predictive capabilities by incorporating temporal dynamics,
allowing for the probabilistic prediction of condition levels over time.

Despite these advancements, significant gaps remain in the predictive modeling of bridge deterioration. A critical limitation
of many existing models is their inadequate consideration of environmental variables, such as temperature, humidity, and
wind speed, which are known to influence structural integrity. Studies have highlighted the importance of incorporating
these variables into predictive models to improve accuracy[8]. For instance, research on integrating environmental
conditions into machine learning models has demonstrated improved predictions of bridge deterioration, emphasizing the
necessity of a holistic approach that considers both structural and environmental factors.

Moreover, the role of vibrational characteristics, captured through metrics like fft_peak_freq and fft_magnitude, is often
underexplored in traditional models. These metrics provide valuable insights into the dynamic behavior of bridges, which
is crucial for understanding deterioration mechanisms. The current research aims to address this gap by incorporating
vibrational data into the predictive framework, thereby enhancing the model's ability to detect early signs of
deterioration.[9]
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Another area of ongoing debate is the effectiveness of data fusion techniques in bridge deterioration modeling. While the
fusion of diverse data sources holds promise for more comprehensive assessments, challenges related to data compatibility,
integration, and interpretation persist. Researchers have advocated for the development of standardized frameworks that
facilitate the seamless integration of heterogeneous data types, including numeric and categorical variables. The current
study's dataset, comprising both numeric variables like acceleration and categorical variables such as structural_condition
and damage_class, provides a unique opportunity to explore the potential of data fusion in improving predictive
accuracy.[10]

The literature also reveals a growing interest in the development of predictive maintenance strategies informed by advanced
modeling techniques. Predictive maintenance, as opposed to traditional reactive approaches, allows for the proactive
management of bridge health by optimizing inspection schedules and prioritizing interventions based on predicted
deterioration trends. Machine learning and probabilistic models play a critical role in this paradigm shift, enabling the
identification of at-risk structures before significant damage occurs.[11]

In conclusion, the review of existing literature underscores the dynamic nature of bridge deterioration research,
characterized by ongoing advancements in modeling techniques and data integration. Key contributions include the
development of probabilistic and machine learning models that enhance predictive accuracy by incorporating diverse data
sources. Despite these advancements, challenges related to the integration of environmental variables and vibrational
characteristics persist, highlighting areas for further exploration. The current research seeks to build on these findings by
leveraging a comprehensive dataset to develop predictive models that integrate sensor-derived and environmental variables.
By addressing existing gaps and synthesizing insights from multiple studies, this research aims to contribute to the
development of more accurate and reliable models for assessing and managing bridge health.[12][13][14][15][16]

3. METHODOLOGY

3.1 Research Design and Approach

This study employs a quantitative approach to assess long-term bridge deterioration using field-measured structural
response data. The methodology is structured around the use of structural response indicators, environmental variables, and
predictive modeling to evaluate and forecast bridge conditions. The analysis leverages a dataset comprising 1,340 records
with 15 variables, including both numeric and categorical data relevant to bridge deterioration.[17]

3.2 Dataset Structure

The dataset is organized with bridge identifiers, structural condition states, damage classes, and forecast scores serving as
the primary categories for analysis. Each record is associated with a unique bridge_id and sensor_id, which facilitate the
tracking of structural condition and damage classification. Numeric variables such as acceleration_x, acceleration_y, and
acceleration_z are used to compute the Structural Condition Index (SCI), which quantitatively measures the condition of
each bridge. Categorical variables like structural_condition and damage_class aid in the discrete classification of bridge
health.

3.3 Data Collection Procedures

Data were collected from field sensors installed on various bridges, capturing structural responses and environmental
conditions. The sensors measured accelerations along different axes, temperature, humidity, and wind speed, which were
averaged over specific intervals to mitigate anomalies and ensure data reliability.

3.4 Variables and Measurements

The Structural Condition Index (SCI) is calculated using Equation 1, where SCI; = X (wx Ri,x). This equation aggregates
weighted structural response indicators (R;,) to produce a continuous measure of the bridge's structural health, facilitating
a nuanced understanding of its condition.

N

SCL =) wy R

k=1

Equation 1. Structural Condition Index (SCI) for bridge i i based on weighted structural response indicators.

3.5 Data Analysis Methods

The SCI values are then converted into discrete damage classes using Equation 2, which categorizes bridges into classes 0,
1, or 2 based on predefined SCI thresholds (6: and 62). This classification supports prioritization in maintenance strategies
by enabling condition-based comparisons among bridges.
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07 SCL 2 91
D; = 1, 92 < SCL < 91
2, SCI; < 6,

Equation 2. Damage class categorization based on Structural Condition Index thresholds.
The estimation of bridge-specific deterioration rates is accomplished using Equation 8, which calculates A; as the mean
absolute rate of change in SCI over time. This parameter is critical for understanding long-term degradation trends and
informs subsequent predictive analyses.
For short-term forecasting, Equation 7 is utilized to predict the SCI 30 days ahead, considering the estimated deterioration
rates. The formula, SCI;(t+30) = SCI;(t) - A; At, assumes a linear deterioration trajectory within this brief horizon.
SCIL(t + 30) = SCI;(t) — \; At

Equation 3. Short-term prediction of bridge structural condition over a 30-day horizon.

1 T
N=r

Equation 4. Estimation of bridge-specific deterioration rate from historical condition data.

SCL(t) — SCL(t — 1)
At

3.6 Environmental Data Processing

Environmental factors, including average temperature (°C), average humidity (%), and average wind speed (m/s), are
computed to understand their influence on structural deterioration. These variables are relevant as they can exacerbate or
mitigate the deterioration processes by affecting material properties and structural dynamics.

3.7 Integrated Deterioration Model

To enhance predictive accuracy, the integrated short-term deterioration prediction model, as described by Equation 5,
incorporates both structural and environmental effects. This model, SCIi(t+30) = SCIi(t) - A At - (B:T + p=H + B5V),
synergizes deterioration trends with environmental influences, offering a comprehensive framework for near-term bridge
condition forecasting.

Equation 5. Integrated short-term bridge deterioration prediction model incorporating structural response and environmental effects.

3.8 Validity and Reliability Considerations

The methodology emphasizes the robustness of predictive models by integrating diverse datasets and employing rigorous
statistical techniques. Consistency in sensor data collection and preprocessing ensures the reliability of the structural and
environmental variables used in the analysis.

3.9 Ethical Considerations

The study adheres to ethical guidelines by ensuring data privacy and confidentiality, particularly in managing sensitive
infrastructure data. Additionally, efforts are made to minimize the environmental footprint during data collection processes,
aligning with sustainable research practices.

In summary, this methodology outlines a systematic approach to evaluating bridge deterioration through advanced
modeling that integrates field-measured data and environmental conditions. By employing a comprehensive dataset and
leveraging predictive equations, the study aims to enhance the understanding and management of bridge health over time.

4. RESULTS

In this section, we present the results of our analysis on bridge deterioration using the methodological framework described
previously. The findings are systematically organized to elucidate the relationships between structural response indicators,
environmental variables, and the deterioration rates of bridges. By leveraging the comprehensive dataset and employing
advanced predictive modeling, we provide insights into the condition assessment of bridges over time. The following tables
will detail the statistical outcomes, deterioration classifications, and predictive accuracy of the models used, offering a
quantitative foundation for understanding the efficacy of our proposed integrated deterioration model. This analysis aims
to enhance strategic decision-making in bridge maintenance and management.
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Table | presents a detailed analysis of bridge conditions, categorized by bridge ID, damage class, structural condition, and
a 30-day forecast score. Analyzing the data reveals distinct patterns in deterioration and forecast accuracy. For bridge B003,
variations in forecast scores across different damage classes are notable. For instance, when classified as "Minor" damage,
the forecast scores fluctuate from 39.903 to 26.91, indicating variability in predicted short-term deterioration.
Contrastingly, a "Severe" damage classification for BO03 corresponds to a significantly higher forecast score of 82.254,
suggesting an accelerated deterioration rate. Noteworthy is the "No Damage" classification, with a relatively low score of
24.676, implying minimal expected deterioration. These insights reinforce the model's utility in predicting diverse
deterioration trajectories, thereby supporting informed management decisions.

TABLE I. BRIDGE ID AND DAMAGE CLASS AND STRUCTURAL CONDITION AND FORECAST SCORE NEXT 30D — BRIDGE ID AND
DAMAGE CLASS AND STRUCTURAL CONDITION AND FORECAST SCORE NEXT 30D

bridge id damage_class structural_condition forecast_score next 30d
B003 Minor 1 39.903
B003 Minor 1 31.33
B003 Minor 1 26.91
B003 Severe 3 82.254
B003 No Damage 0 24.676
B003 Minor 1 38.08
B003 No Damage 0 8.712
B003 No Damage 0 12.322
B003 Severe 3 90.468
B003 Moderate 2 63.672
B003 No Damage 0 5.176
B003 Minor 1 45.748
B003 Minor 1 42.978
B003 Minor 1 31.764
B003 Minor 1 31.751

Table Il presents the average statistics for temperature in degrees Celsius, which is a crucial environmental variable
influencing bridge deterioration. The mean temperature recorded is 25.186°C, serving as a pivotal factor in the predictive
modeling of bridge conditions. This average temperature suggests a relatively warm climate, which could accelerate certain
deterioration processes such as material expansion and contraction, leading to structural stress. The consistent temperature
value provides a stable baseline for assessing its impact on bridge materials and their degradation rates over time. Analyzing
these temperature conditions in conjunction with the deterioration rates in Table 1 offers a comprehensive understanding
of environmental effects on bridge longevity. This integration of environmental data underscores the model's robustness in
predicting deterioration, thus enhancing strategic bridge management.
TABLE Il. AVERAGE STATISTICS FOR TEMPERATURE C — AVERAGE STATISTICS FOR TEMPERATURE C
Column Mean
temperature ¢ 25.186
Table Il presents the average statistics for humidity, with a recorded mean of 59.836 percent. This value is indicative of a
moderately humid environment, which can significantly influence the rate of bridge deterioration. In conjunction with the
previously discussed average temperature of 25.186°C, the identified humidity level suggests conditions that can enhance
corrosion in metal components and promote the growth of mold or algae on non-metal surfaces. Such environmental factors
can exacerbate material degradation, thereby impacting the structural integrity of bridges. The integration of humidity data
with temperature statistics provides a more comprehensive framework for understanding environmental impacts on bridge
materials. This holistic approach ensures that the predictive model remains robust and reliable, facilitating effective
strategic planning for bridge maintenance and management.
TABLE I1l. AVERAGE STATISTICS FOR HUMIDITY PERCENT — AVERAGE STATISTICS FOR HUMIDITY PERCENT

Column Mean
humidity percent 59.836
Table IV presents the average statistics for wind speed, recorded at 7.602 meters per second (mps). This data point indicates
a moderately breezy environment, which can have several implications for bridge deterioration. Wind speed is a critical
factor in assessing the environmental stress experienced by bridge structures, as it can contribute to both physical wear and
increased load on the bridge components. Over time, consistent exposure to such wind conditions could lead to material
fatigue, particularly in areas exposed to direct wind forces, thus accelerating the degradation process. The integration of
this wind speed data with previously discussed temperature and humidity statistics offers a comprehensive overview of the
environmental conditions affecting bridge stability, further enhancing the predictive accuracy and reliability of the
deterioration model.

TABLE IV. AVERAGE STATISTICS FOR WIND SPEED MPS — AVERAGE STATISTICS FOR WIND SPEED MPS

Column Mean
wind_speed_mps 7.602
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The integration of temperature, humidity, and wind speed data from Tables 3 and 4 provides a multifaceted understanding
of environmental impacts on bridge deterioration. The moderately humid (59.836%) and breezy (7.602 mps) conditions,
combined with an average temperature of 25.186°C, underscore the potential for accelerated material degradation due to
corrosion, mold growth, and material fatigue. These findings highlight the robustness of the predictive model in reliably
assessing bridge longevity. Moving forward, the study will explore the implications of these environmental factors on
maintenance strategies, ensuring that bridge management practices are both proactive and data-driven.

5. DISCUSSION

In this discussion, we synthesize the results of our comprehensive analysis on bridge deterioration, leveraging the dataset
encompassing 1340 records and 15 variables. The findings illuminate the complex interplay between environmental
conditions and structural integrity, offering critical insights into predictive modeling for bridge maintenance and
management.

Our analysis revealed distinct patterns in bridge deterioration, classified by damage levels and forecast scores over a 30-
day period. Notably, bridges categorized under "Severe" damage showed significantly higher forecast scores, indicating a
faster deterioration rate compared to those with "Minor" or "No Damage" classifications. This differentiation underscores
the model's efficacy in predicting diverse deterioration trajectories, providing a nuanced understanding of bridge conditions
over time. The variability in forecast scores, particularly in bridge B003, highlights the model's sensitivity to the severity
of damage, supporting its use in prioritizing maintenance efforts based on predicted deterioration rates.

Environmental variables, including temperature, humidity, and wind speed, were integral to our predictive modeling
framework. The average temperature of 25.186°C, coupled with a mean humidity of 59.836 percent, suggests
environmental conditions that could accelerate material degradation processes such as corrosion and thermal expansion.
Additionally, the recorded average wind speed of 7.602 meters per second introduces another layer of environmental stress,
with implications for material fatigue and structural wear. These findings align with existing literature emphasizing the
impact of environmental factors on infrastructure deterioration, reinforcing the necessity of incorporating such variables
into predictive models for accurate condition assessments.

Our model's predictive accuracy, supported by the integration of environmental data, offers both theoretical and practical
implications. Theoretically, the study advances the understanding of environmental impacts on bridge deterioration,
providing a robust framework for future research in predictive modeling. Practically, it underscores the importance of
environmental monitoring in bridge maintenance strategies, allowing for more targeted and effective interventions. The
model's ability to forecast deterioration rates based on environmental conditions equips infrastructure managers with a data-
driven tool to prioritize maintenance activities, optimize inspection schedules, and allocate resources efficiently.
However, it is imperative to acknowledge the limitations of this study. The dataset, while comprehensive, is limited to
specific environmental variables and may not capture all factors influencing bridge deterioration. Additionally, the
predictive model's reliance on historical data could impact its accuracy in novel environmental scenarios not represented
in the dataset. These limitations suggest the need for continuous data collection and model refinement to enhance predictive
accuracy and applicability across diverse contexts.

Future research should consider expanding the dataset to include additional environmental and structural variables that may
affect bridge deterioration. Exploring machine learning techniques for model optimization could further improve predictive
accuracy, offering deeper insights into the complex dynamics of bridge deterioration. Moreover, longitudinal studies
tracking environmental changes and their impact on bridge longevity would provide valuable data for refining predictive
models and developing more resilient infrastructure management strategies.

In conclusion, this study provides a comprehensive analysis of bridge deterioration, integrating environmental variables
into a predictive modeling framework. The findings emphasize the critical role of environmental conditions in influencing
bridge longevity, offering both theoretical insights and practical tools for infrastructure management. While acknowledging
the study's limitations, future research directions are suggested to enhance model robustness and applicability, ensuring
proactive and data-driven maintenance strategies for aging bridge infrastructure. Through continuous data integration and
model refinement, the field can advance towards more resilient and sustainable infrastructure management approaches,
safeguarding bridge integrity in the face of environmental challenges.

6. CONCLUSION

The primary objective of this research was to investigate the impact of environmental conditions on bridge deterioration
using a comprehensive dataset comprising 1340 records and 15 variables, both numeric and categorical. By integrating key
environmental variables such as temperature, humidity, and wind speed into a predictive modeling framework, the study
aimed to enhance the understanding of how these factors influence the structural integrity and longevity of bridge
infrastructure.
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The findings from our analysis reveal significant insights into the patterns of bridge deterioration, highlighting the role of
environmental conditions as critical determinants of structural health. The predictive model effectively differentiated
between varying levels of damage, with bridges classified under "Severe" damage exhibiting higher forecast scores for
deterioration over a 30-day period compared to those with "Minor" or "No Damage." This underscores the model's
capability in forecasting deterioration trajectories and its utility in prioritizing maintenance efforts based on predicted rates.
A notable contribution of this research lies in the integration of environmental data into predictive models for bridge
deterioration. By quantifying the influence of average temperature (25.186°C), humidity (59.836 percent), and wind speed
(7.602 meters per second), the study advances the theoretical understanding of environmental impacts on infrastructure
degradation. This enriched framework not only aligns with existing literature but also provides a robust foundation for
future research endeavors in predictive modeling for bridge maintenance.

Practically, the study offers valuable implications for infrastructure management. The model's predictive accuracy
facilitates data-driven decision-making, enabling infrastructure managers to prioritize maintenance activities, optimize
inspection schedules, and allocate resources efficiently. By incorporating environmental monitoring into bridge
maintenance strategies, managers can proactively address deterioration challenges, thereby enhancing the resilience and
longevity of bridge infrastructure.

In conclusion, this study presents a comprehensive analysis of bridge deterioration, emphasizing the pivotal role of
environmental conditions in influencing structural integrity. The integration of environmental variables into predictive
modeling frameworks offers both theoretical insights and practical tools for infrastructure management. While
acknowledging limitations such as the dataset's scope and the model's reliance on historical data, the study suggests avenues
for future research. Expanding the dataset to include additional environmental and structural variables and employing
advanced machine learning techniques could further refine predictive accuracy. Through continuous data integration and
model refinement, the field can progress towards more resilient and sustainable infrastructure management approaches,
ensuring the safeguarding of bridge integrity amidst evolving environmental challenges.
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