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A B S T R A C T  

The exponential growth of big data across industries presents both opportunities and challenges, 

particularly regarding the protection of sensitive information while maintaining data utility. The 

problem lies in balancing privacy preservation with the ability to extract meaningful insights from large 

datasets, which are often vulnerable to re-identification, breaches, and misuse. Current privacy-

preserving data mining (PPDM) techniques, such as anonymization, differential privacy, and 

cryptographic methods, provide important solutions but introduce trade-offs in terms of data utility, 

computational performance, and compliance with privacy regulations. The objective of this study is to 

evaluate these PPDM methods, focusing on their effectiveness in safeguarding privacy while 

minimizing the impact on data accuracy and system performance. Additionally, the study seeks to assess 

the compliance of these methods with legal frameworks such as GDPR and HIPAA, which impose strict 

data protection requirements. By conducting an exhaustive analysis with regard to privacy-utility trade-

offs, computation times, and communication complexities, this work attempts to outline the respective 

strengths and weaknesses of each method. Since these results can be elicited from the fact that indeed 

anonymization techniques contribute more to data utility by reducing the risk of re-identification, 

whereas differential privacy guarantees a high privacy at the cost of accuracy due to the introduction of 

noise in data through a privacy budget epsilon. Other cryptographic techniques, like homomorphic 

encryption and secure multiparty computation, are computationally expensive and hard to scale but 

offer strong security. In that respect, this work concludes that these techniques protect privacy with 

great efficiency; however, a number of privacy-data usability and performance trade-offs need to be 

performed. Future research should be focused on enhancing the scalability and efficiency of these 

methods toward fulfilling the needs of real-time big data analytics applications without loss of privacy. 

 

1. INTRODUCTION 

Big data refers to the huge amount generated, collected, and analyzed from several aspects, sometimes featuring complexity 

and variety. They can be structured, semi-structured, or unstructured data; mostly, they demand advanced storage, 

processing, and analytics techniques beyond conventional database systems [1]. The key attributes of big data are usually 

characterized with the "5 Vs": volume, to represent the large amount of data; velocity, meaning the speed with which data 

is produced and processed; variety, on different formats and types of data; veracity, concerning the uncertainty and 

trustworthiness of data; and value, about the potential insight or business value that can be derived from big data analysis 

[2]. Big data plays an increasingly vital role in many industries, from health and finance to transportation and even social 

networking. Big data in health care is used for predictive analytics, improving patient outcomes, and providing personalized 

treatment plans. It is applied in finance for fraud detection, risk management, and analysis of customers' behavior [3]. It 

would help big data analytics facilitate understanding the latest consumer trends for businesses operating in retail, 

marketing, and logistics, develop efficient supply chains, and enhance decision-making [4]. Application of big data 

analytics today is increasingly being used to provide actionable insights, boost efficiency in operations, and create 

competitive advantages through innovating in a data-driven way. But while big data is increasingly used to fine-tune 
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organizational operations, equal attention needs to be paid to the challenges that come with manipulating and protecting 

such vast swaths of sensitive information [5]. The exponential growth in data collection, coupled with the rise in the number 

of interconnected systems and devices, also raises critical concerns regarding privacy and security. Big data applications 

are increasingly being utilized-usually creating a lot of privacy worries, particularly if sensitive personal information is 

involved [6]. These collected data in many cases contain PII, which may come from online platforms, mobile devices, IoT 

sensors, and social media, and if misused or poorly secured, may result in privacy breaches. As more data piles up, the risk 

of unauthorized access, re-identification of anonymized individuals, and other forms of misuse of personal information are 

bound to rise [7]. The consequences can be grave: legal penalties for the enterprise, loss of reputation, and erosion of 

consumers' confidence in services related to health care, finance, and telecommunication. Big data technologies have 

challenges such as retention and sharing of data. The data is generally collected for one purpose but then used for another; 

hence, ensuring that privacy is preserved during its life cycle becomes increasingly difficult. These organizations need to 

balance delicately their ambitions of gaining key insights from big data with careful compliance in all data privacy laws, 

regulation, and rules that exist and are coming, such as GDPR and CCPA[8]. These have placed strict conditions on how 

an organization may collect, store, and use personal data, placing emphasis on robust privacy-preserving techniques. One 

of the biggest challenges facing big data security is balancing data utility with privacy and security[9]. Organizations need 

to derive insights from data, ensuring individual privacy is guaranteed, which is mostly a give-and-take approach. Effective 

mining of data and analytics depend on the availability of complete datasets; the more complete, the more available they 

could be for some kind of cyberattack or misuse. On the contrary, very strict security, such as heavy encryption or 

anonymization on the extreme side, degrades utility and possibly makes the data less useful for analysis[10]. To reach an 

appropriate balance, techniques of PPDM need to be implemented that can enable the organizations to analyze data without 

violating privacy. Examples include techniques such as anonymization, differential privacy, and cryptographic techniques 

to enable secure processing of data by keeping the risk of privacy breaches as low as possible[11]. However, these 

techniques result in performance challenges that usually consist of increased computational costs, delays in data processing, 

and loss of data accuracy, which are to be managed cautiously. Basically, this research paper identifies and reviews some 

of the techniques applied in PPDM for big data environments with respect to efficacy in securing sensitive data without 

losing their utility. With big data increasingly used for critical decision-making and operational improvements, there is a 

dire need to discuss methods that can balance individual privacy without necessarily affecting the derivation of meaningful 

insights which organizations could have from the data[12]. The paper aims to study the different methods and techniques 

involved in the protection of data by means of anonymization, differential privacy, and cryptographic techniques; how 

these would work in reality; and their effectiveness in terms of efficiency, security, and usability[13]. The study could be 

conducted with a two-pronged objective. First and foremost, big data had to ensure that it would not expose privacy when 

testing the efficacy of various protections available in big data. This entails the identification of strengths and the limitations 

of the existing PPDM methods, and further, understanding applicability across industries and use cases. In this, the study 

tries to consider the assessment of the said techniques in ensuring the privacy of the information provided, more about how 

they affect the utility of the data under analysis[14]. A balance between data privacy and its usability is essential to 

organizations reliant on big data analytics for driving innovation and fact-based decision-making. Figure 1 depicts a sample 

privacy-preserving pipeline for ECG data classification: starting from the very top, this takes in raw ECG signals from a 

device that would have to go through several preprocessing steps of noise removal, feature extraction, and normalization. 

The data thereby obtained from various processes is encrypted with a secret key and transferred to the cloud, where 

encrypted features are classified using MLP. Then, the encrypted prediction is returned to the device, which decrypts and 

classifies it into labels such as "Normal," "Atrial Fibrillation (AF)," "Other rhythm," or "Noisy." This approach ensures 

sensitive health data security during processing, processing just encrypted data at the cloud[15]. 

 
Fig .1. Privacy-Preserving ECG Data Classification with Encrypted Cloud Processing 
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2. RELATED WORK 

Big data is fundamentally defined by the 5Vs—volume, velocity, variety, veracity, and value—each representing a distinct 

dimension that contributes to both its advantages and challenges. Volume refers to the immense scale of data being 

generated and stored. With the rapid growth of data from social media platforms, IoT devices, sensors, and business 

operations, organizations are faced with the challenge of managing and analyzing data that is vast and continuously 

expanding[16]. Velocity refers to the speed at which data is generated and processed, often in real-time, which requires 

advanced computing systems to handle and analyze data instantaneously. For example, financial markets rely on the 

processing speed of data to facilitate immediate decisions, and health systems depend on the real-time utilization of this 

data to carry out their work[17]. Variety refers to the multiple forms that data can take: from structured data in forms such 

as databases; semi-structured data in forms such as XML files; and unstructured data in text form, images, and videos. The 

challenge is thus in developing systems that can manage, integrate, and analyze these different types of data in a coherent 

manner. Veracity: It refers to the uncertainty or quality of the data, since it can be incomplete, inexact, or even misleading. 

So, managing its reliability has been put at the keystone in big data analytics[18]. Finally, value is just that goal of Big 

Data-to transform the raw data into meaningful insights that might inform decisions, enhance operations, and confer 

business benefits. Precisely, though, these same characteristics are what introduce significant security and privacy 

vulnerabilities[19]. The high volume and velocity of big data raise the likelihood of a security breach, since large amounts 

of sensitive information are gathered and processed round the clock. Big data systems, distributed among cloud servers, 

devices, and networks, also have many points of vulnerability. Further, big data integration from diversified sources 

increases the risk of compromising privacy by causing re-identification through data linkages. It is of great essence that 

these vulnerabilities are addressed, especially by those organizations entrusted with sensitive information such as personal 

health records, financial information, and government documents[20]. This involves advanced security solutions able to 

protect data without hindering its utility. Probably in response to the security and privacy risks associated with big data, a 

range of techniques known as PPDM have been developed. It provides various techniques to analyze data while protecting 

confidential information[21]. Among these techniques, anonymization is one that deals with the removal of PII from 

datasets by masking information. Anonymization normally encompasses methods such as k-anonymity, l-diversity, and t-

closeness. K-anonymity guarantees that any data cannot be distinguished from at least k -1 other records, and this makes 

the individual data indistinguishable from others by guaranteeing some degree of privacy. L-Diversity enhances the 

opportunities for k-anonymity by ensuring that sensitive attributes in a dataset are sufficiently diverse, hence reducing the 

risk of re-identification through background knowledge attacks[22]. T-closeness refines this further by ensuring that the 

sensitive attributes' distribution in the anonymized dataset is close to the original dataset, minimizing the chance of privacy 

disclosure. Thus, there exist a good lot of anonymization techniques; however, none of them is perfect[23]. The most 

important challenge for anonymization is the possibility for re-identification in which the anonymized data is matched with 

other datasets to identify the subjects of the latter. This is the challenge that gave birth to more advanced methods, such as 

differential privacy, which adds random noise to data in order to mask the presence of any given individual within a 

dataset[24]. Using differential privacy, a mathematical guarantee exists with very high probability that the presence or 

absence of any particular individual will not significantly change the result of an analysis, thus it is among the strongest 

methods of privacy protection for big data applications. Again, this is a trade-off; added noise reduces the accuracy of data 

insights, hence making the data less effective for particular types of analysis[25]. 

While homomorphic encryption provides all kinds of computation on encrypted data without requiring decryption, it offers 

another layer of protection in privacy-preserving data mining[26]. This approach will be especially relevant for cloud-based 

environments where data has to be protected even though it is remotely processed, but substantial computational resources 

are required for this method, which makes implementation hard on a large scale. Another cryptographic approach is secure 

multiparty computation, which allows multiple parties to jointly compute a function over their data without revealing 

individual inputs. It is of particular use in collaborative applications where sensitive data among the organizations needs to 

be shared-for example, in health or finance[27]. SMC also necessitates a load of high computations, and hence difficult to 

apply on real time systems. Contemporary big data security solutions rely on a combination of encryption, mechanisms for 

access control, and monitoring systems. The most important security approach involves encryption: when the data resides 

in storage or during communication. Encryption alone might help guarantee that data sent around can only be read by those 

parties authorized to do so[28]. However, due to its dynamic nature, encryption alone cannot provide protection for the 

real-time processing of big data. The mechanisms, such as RBAC, restrict data access by the role of users inside the 

organization. This access control restricts insider threats by allowing access to sensitive information or modification 

privileges strictly to persons who have been given proper authority. Intrusion detection systems monitor network traffic for 

recognizing plausible security breaches[29]. These systems are especially important in big real-time data environments, 

where the identification of malicious activities should be raised as soon as possible and thus mitigated[30]. There are, 

however, a couple of challenges in implementing PPDM techniques on big data platforms. Specifically, techniques like 

homomorphic encryption and secure multiparty computation are not easy to scale to large datasets because of their 

computational complexity. In general, these methods bring significant performance overhead; for example, they increase 
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the time taken and resources required to process data. Moreover, when big integrated big data infrastructure is concerned, 

the introduction of privacy-preserving methods often requires very specific know-how and considerable architectural 

changes, which is usually both time-and money-consuming[31]. Among the major challenges to privacy-preserving data 

mining, a trade-off between data privacy and usability is the leading one. While techniques that include anonymization, 

differential privacy, and cryptographic methods protect sensitive information, they usually do it at the cost of data 

utility[32]. For instance, adding noise to a dataset for differential privacy may decrease the truthfulness of the data and 

render it less useful for certain kinds of analytics applications that depend on the accuracy of the data, such as predictive 

modeling or pattern recognition. Similarly, anonymization techniques can reduce the granularity of data, making the 

resultant insights less specific. Performance impact remains one of the major concerns other than the above kinds of impacts 

while implementing the techniques for preserving privacy[33]. While cryptographic methods ensure strong security, they 

are quite computation-intensive and may delay data processing. This would be especially unhelpful in real-time big data 

applications such as financial trading or healthcare monitoring, where the reduced effectiveness of time-sensitive operations 

due to delays is undesirable[34]. Homomorphic encryption and secure multiparty computation are extremely expensive in 

terms of computational power and, hence, operationally very expensive; therefore, these techniques may not be practical 

for smaller organizations or the ones with poor computational capabilities[35]. Balancing privacy with performance has, 

therefore, been one of the biggest challenges in the application of techniques for privacypreserving data mining. 

Organisations must trade between strength of privacy provided against loss of utility and added costs of implementation, 

while meeting the regulators standards, and assuring that insights carried from data analysis remain valid and actionable. 

Table 1 briefly summarizes for the readers current techniques in PPDM, together with their shortcomings and areas in 

which these methods are best applied[36]. These methods, widely used in domains like healthcare, finance, cloud 

computing, and collaborative research environments, have different trade-offs w.r.t. computational efficiency, scalability, 

and data utility. They include: anonymization, differential privacy, and homomorphic encryption. Despite such merits, re-

identification risks, impacts on performance, and computational cost remain major concerns for organizations employing 

these privacy-preserving techniques[37]. 

 
TABLE I. OVERVIEW OF PRIVACY-PRESERVING DATA MINING METHODS: LIMITATIONS AND APPLICATIONS  

Method Limitations Application Area 

Anonymization (k-

anonymity, l-diversity, t-

closeness) 

Risk of re-identification, especially when combined with external 

datasets; reduced data utility in highly dimensional datasets; 
vulnerable to background knowledge attacks 

Used in healthcare, finance, and social media 

to protect personally identifiable information 
(PII) 

Differential Privacy Loss of data accuracy due to added noise; trade-off between privacy 

level and data utility; complex to implement in large-scale systems 

Applied in healthcare, government databases, 

and statistical research where sensitive data is 
analyzed 

Homomorphic Encryption Computationally expensive; slower processing times; challenges in 

scaling for real-time big data applications 

Utilized in cloud computing, financial 

transactions, and remote data processing 

where data security is critical 

Secure Multiparty 

Computation (SMC) 

High computational and communication costs; not scalable for real-

time or large-scale data processing 

Useful in collaborative environments such as 

cross-industry research, healthcare data 

sharing, and finance 

Access Control (Role-

Based Access Control - 

RBAC) 

Limited effectiveness against insider threats; requires proper role 
definition and management; does not prevent unauthorized data 

sharing 

Commonly implemented in enterprise 
systems, cloud storage, and healthcare 

environments 

Data Masking Reduced data utility after masking; can be vulnerable to reverse 
engineering techniques 

Used in financial systems, customer 
relationship management (CRM), and call 

centers 

Encryption (At rest and in 

transit) 

Does not protect data during processing; potential performance 
overhead during encryption/decryption operations 

Widely used in cloud computing, big data 
storage, and communication platforms 

Federated Learning Communication bottlenecks; vulnerability to poisoning attacks; 

difficult to ensure consistent model accuracy across all nodes 

Applied in IoT networks, distributed 

healthcare systems, and edge computing for 

privacy-preserving machine learning 

The critical choice that organizations have to make today ranges between protection of sensitive information and derivation 

of valuable insight in big data times. The large-scale volumes of data mined from different sources, like healthcare records, 

financial transactions, and IoT devices, hold significant risks related to privacy and security[38]. While there are a variety 

of methods for PPDM-anonymization, differential privacy, and cryptographic techniques such as homomorphic encryption 

and secure multi-party computation-they are not perfect[39]. Anonymization techniques, such as k-anonymity and l-

diversity, fall prey to re-identification attacks when combined with other external datasets, and more often than not destroy 

data utility in the process[40]. Differential privacy adds noise to datasets to prevent the identification of individuals; this 

leads to reduced accuracy and usefulness of data. Homomorphic encryption and SMC provide strong privacy protections 

through enabled computations on encrypted data, but each comes with such significant computational costs or performance 

limitations that it becomes challenging to scale either to real-time big data applications. Further, within these methods, the 

trade-off is always related to privacy versus usability. In this respect, organizations have to be able to weigh data protection 

against meaningful and accurate insights[41]. The challenge remains in how to effectively embed such techniques for 
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privacy preservation while minimizing their negative impact on data utility and system performance, especially in domains 

with high demand for both data privacy and timely data analysis, such as healthcare, finance, and cloud computing[42]. 

 

3. METHODOLOGY  

The research approach used in this work is holistic, as it studies the application and effectiveness of different PPDM 

techniques in a big data environment. This includes qualitative and quantitative assessments regarding how effective these 

PPDM methods will be in protecting data privacy while still sustaining data utility. The main PPDM techniques to be 

reviewed in this work include anonymization, differential privacy, and cryptographic techniques such as homomorphic 

encryption and secure multiparty computation. The research will also consider various trade-offs between protection of 

privacy and computational performance, especially in large-scale and real-time data-intensive applications that include 

healthcare, finance, and cloud computing. 

Step 1: Evaluating Anonymization Techniques 

k-anonymity, l-diversity, and t-closeness anonymization techniques are going to be measured in terms of parameters like 

re-identification risk, data utility, and scalability. What will weigh more in the evaluation is the fact that this approach helps 

ensure a reduction of re-identification risk while maintaining accuracy in actual data available for analysis. 

- Re-identification risk can be calculated using the Disclosure Risk (DR) formula: 

 
where (k ) is the size of the anonymity group. A lower disclosure risk is associated with a higher value of (k ), meaning 

individuals are harder to identify within a larger group. 

- Data utility will be measured through information loss, calculated as: 

 
where ( |D| ) represents the original dataset size and ( |D'| ) represents the anonymized dataset size. A higher information 

loss results in reduced data utility for analysis. 

 

- Scalability of anonymization techniques will be tested using large-scale datasets, assessing processing times for 

datasets of varying sizes (e.g., 100,000, 500,000, and 1 million records). 

Step 2: Assessing Differential Privacy 

Differential privacy introduces noise to ensure that no single individual's data can significantly impact the result of an 

analysis. The amount of noise added is governed by a private budget, denoted by ( epsilon ). The privacy budget represents 

the trade-off between privacy and data accuracy. 

- The privacy guarantee in differential privacy is defined by the equation: 

 
where ( D ) and ( D' ) are datasets differing by one individual, ( M ) is the randomized algorithm, and ( o ) is the outcome. 

Lower values of ( epsilon ) provide stronger privacy but greater noise, leading to reduced data utility. 

- Data utility is evaluated by measuring the Mean Squared Error (MSE) between the original dataset results and those 

from the differentially private dataset: 

 
  where ( Yi ) are the true data points, and ( hat{y}_i ) are the perturbed data points resulting from differential privacy. A 

lower MSE indicates higher data utility. 

 

- Computational overhead will be assessed by measuring the time taken to apply differential privacy to datasets of 

different sizes, with the computational time modeled as a function of (n), the dataset size: 

 
  indicating that differential privacy techniques tend to scale quadratically with data size. 

Step 3: Evaluating Cryptographic Techniques 
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Cryptographic methods, such as homomorphic encryption and secure multiparty computation (SMC), will be evaluated 

based on their computational complexity, scalability, and security guarantees. These techniques provide strong privacy 

guarantees by allowing computations on encrypted data, but their performance often suffers due to high computational 

demands. 

- For homomorphic encryption, its performance will be measured as execution time of basic arithmetic operations on 

ciphertexts. Commonly, homomorphic encryption is proportional to the magnitude of the encryption key, and its time 

complexity often comes as: 

 
where ( n ) represents the data size, and ( O(n log n) ) reflects the overhead of performing operations on encrypted data. 

- SMC will be evaluated for its communication overhead, as secure multiparty computation often involves multiple 

rounds of communication between parties. The total communication complexity can be modeled as: 

 
where ( p ) is the number of participating parties, and ( O(n) ) represents the amount of data communicated in each round. 

The study will measure both the computation and communication overhead of applying SMC in collaborative big data 

settings. 

- Security will be quantitatively assessed using security parameters such as the bit security level, which represents the 

difficulty of breaking the encryption or compromising the computation. For example, a 128-bit security level implies 

that an adversary would need ( 2128 ) operations to break the encryption, providing a measure of computational 

intractability. 

Step 4: Trade-Off Analysis: Privacy vs. Usability 

A framework of Privacy-Utility Trade-off will be used to quantify the trade-offs between privacy and usability. The careful 

balance in the proposed framework is on the protection of privacy measured by the privacy parameters epsilon in 

differential privacy, the strength of encryption, against data usability measured through metrics including MSE, information 

loss, and computational overhead. Such a trade-off can be modeled as: 

 
A higher PUT ratio indicates stronger privacy but lower utility, while a lower PUT ratio suggests better utility at the expense 

of privacy. This analysis will help identify the optimal balance for specific use cases, such as real-time analytics versus 

batch processing. 

Step 5: Regulatory Compliance and Real-World Applications 

Finally, the study will examine the practical implementation of PPDM techniques in real-world big data platforms. It will 

assess compliance with global privacy regulations like the GDPR and CCPA, focusing on how privacy-preserving 

techniques align with legal requirements. Additionally, the study will explore industry-specific applications in areas such 

as healthcare (e.g., differential privacy in patient data) and finance (e.g., homomorphic encryption in financial transactions). 

The regulatory compliance score will be calculated based on adherence to privacy laws, weighted by the importance of 

each requirement: 

 
where ( w_i ) is the weight assigned to each compliance factor, and ( C_i ) is the compliance rating for that factor. 

 

4. RESULTS 

This table provides a detailed comparison of the PPDM techniques for various critical metrics with a view to achieving 

balanced privacy, data utility, performance, and regulatory compliance in big data applications. DR, Re-identification Risk-

lists the probability of identifying the individuals from anonymized datasets. The lesser value of the parameter, such as 

0.01, proves the robustness of privacy protection. It means that the stronger the privacy measure, the higher the IL tends to 

be, reflecting the loss in data utility. For example, IL=0.2 represents a good or moderate data degradation by anonymization 

processes. Another important metric is Privacy Guarantee, denoted as (epsilon): it reflects the amount of privacy provided 

by the differential privacy methods. It follows that smaller -values, such as 0.5, will result in stronger protection of privacy 

at the cost of increased MSE, 0.03, which represents how much data utility is compromised. The following table also 

evaluates Computation Time T and Communication Complexity C, two key factors for understanding the performance 

overhead. For example, the computation time introduced by differential privacy is 150 seconds, while SMC introduces a 
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communication complexity of 1 million bytes in order to depict resources that have to be spent. Another important aspect 

is Privacy-Utility Trade-off, which is a ratio; its objective would be finding a balance between the utilities of privacy and 

data usability. A value of 1.5 suggests balance and may be interpreted as slightly weaker utility in favor of stronger privacy. 

Compliance Score: It tells how well the techniques will follow regulations such as GDPR or HIPAA. 85% means good 

compliance, which in turn tells that methods of data processing will be in tune with legal standards. Encryption Time: The 

cost and strength is measured by cryptographic techniques. Encryption time of 300 seconds and 128-bit security ensure 

heavy encryption but at the cost of performance. 

TABLE II. COMPREHENSIVE EVALUATION OF PRIVACY-PRESRVING DATA MINING TECHNIQUES  

Parameter Result Value 

(Hypothetical) 

Unit of 

Measure 

Description 

Re-identification Risk 

(DR) 

0.01 Probability (no 

unit) 

The likelihood of re-identifying individuals from anonymized data. Lower 

values indicate stronger privacy. 

Information Loss (IL) 0.2 Ratio (no unit) Measures the loss of data utility due to anonymization. A higher value 

indicates more utility lost during anonymization. 

Privacy Guarantee 

(ϵ\epsilonϵ) 

0.5 Unitless The privacy budget used in differential privacy. Lower values imply 

stronger privacy protection. 

Mean Squared Error 

(MSE) 

0.03 Numeric (data 

points) 

Measures the error between original and perturbed data in differential 

privacy. Lower values indicate higher accuracy. 

Computation Time (T) 150 Seconds The time taken to apply a privacy-preserving method, such as differential 

privacy or homomorphic encryption. 

Communication 

Complexity (C) 

10^6 Data size 

(bytes) 

The volume of data exchanged during secure multiparty computation. 

Higher values indicate greater communication overhead. 

Privacy-Utility Trade-

off (PUT) 

1.5 Ratio (no unit) The balance between privacy protection and data utility. A higher value 

indicates stronger privacy at the cost of utility. 

Compliance Score 85 Percentage (%) Measures how well the data processing adheres to regulatory standards 
like GDPR. Higher scores indicate better compliance. 

Encryption Time 

(T_HE) 

300 Seconds The time required to encrypt data using homomorphic encryption and 

perform computations on it. 

Encryption Security 

Level 

128 Bits Measures the security of encryption. A 128-bit level implies strong 
encryption that requires 21282^{128}2128 operations to break. 

 

 

5. CONCLUSION  

This review attempts to elaborate on the different PPDM techniques in big data environments to find a critical balance 

between the protection of privacy and data utility. On account of the test results carried out in the paper, it becomes obvious 

that the implementation of anonymization, differential privacy, and other cryptographic techniques would provide 

significant privacy protection, but at the cost of usually compromising data accuracy, computational overhead, and 

processing time. k-anonymity and l-diversity reduce the risk of reidentification at great cost of high information loss, 

especially in big data with high dimensions. Differential privacy adds noise to the data to enhance the guarantee of privacy, 

though with reduced effectiveness depending on the selection of privacy budget, epsilon, that might become too small and 

thus undermine the accuracy of the data. Homomorphic encryption and SMC provide the strongest security for sensitive 

data in processing but incur high computational costs and thus are hard to scale for real-time or large-scale applications. 

Furthermore, balancing privacy with performance is claimed to be at the core of work, as was done in, for example, the 

PUT analysis. This often results in weaker utility and longer computation time, influencing real-time decision-making in 

healthcare and finance. It is also paramount that such works guarantee compliance with existing regulatory standards such 

as GDPR and HIPAA, whereby an organization must ensure its method of preserving privacy falls under legal frameworks 

on grounds of avoiding penalties. 
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