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A B S T R A C T  

The rapid evolution of cyberattacks, and in particular DDoS attacks, has outpaced many intrusion 
detection systems (IDSs) that fail to be interpretable or transparent, which subsequently hinders wider 
adoption in real-world high-stake environments. To our knowledge, this is the first joint utilization of 
CNNs with both SHAP and LIME for XAI-IDS tasks, particularly based on comparative evaluations 
across a wide range of different intrusions and a combination of XAI methods. The proposed method 
starts with data acquisition and data preprocessing of NSL-KDD dataset as only DDoS labeled records 
output are chosen and this is followed by data cleaning through data normalization, feature selection and 
label encoding to get accurate results. The dataset is divided into training and testing sets, a 1D CNN is 
trained on the dataset to differentiate DDoS attacks from normal traffic using the hyperparameters with 
optimized values and early stopping. It yields high predictive performance with 94% accuracy, 93% 
precision, 95% recall, and 94% F1-score. For these results, it demonstrates strong classification ability 
with very few false positive and false negative. Stack SHAP for global feature importance and LIME 
for individual predictions to give us human-understandable explainable results of the model. Not only 
does this dual explainability cultivate trust and accountability, it also enhances auditing and compliance 
in sensitive industries. Overall, XAI-IDS shows that the combination of deep learning and post-hoc 
interpretability is a promising approach to the design of trustworthy systems for cybersecurity. Future 
works will be conducted toward real-time deployment and multi-class detection in federated and edge 
learning frameworks. 

1. INTRODUCTION 

With the rapid changing environment of cyber-attack, the main objectives of Intrusion Detection Systems (IDSs) is to 

uncover misuse, abuse, or other malicious vectors on the computer network infrastructures that are perpetrated by either 

internal users or external attackers [1,2]. Traditional IDS techniques work on the premise that malicious activities will 

have a behavioral model significantly different from legitimate network behavior, enabling them to be detected. But with 

the exponential growth of cyber intrusions and the sophistication of current attack methodologies, the classical rules-based 

and anomaly-based methods alone are becoming inadequate. Such increase in threats complexity has increased the demand 

for using advanced Artificial Intelligence (AI) techniques to improve the IDS performance and adaptivity [3,4]. 

Prior work in this area has examined a range of AI methods for countering network threats, including statistical anomaly 

detection [5,6], rule-based misuse detection [7,8], and hybrid approaches operating in experimental systems [9,10]. 

However, the increase in complex, distributed, and stealthy attacks, especially Distributed Denial-of-Service (DDoS), has 

made it increasingly difficult to maintain detection accuracy and interpretability. As attackers are using obfuscation 

methods and heterogeneous environments to compromise targets, AI-based IDSs need to not only detect them but also 

explain them so that timely and appropriate responses can be made [11–15]. In this regard, various AI models have been 

proposed such as Artificial Neural Networks (ANNs) [16,17], Support Vector Machines (SVMs) [18,19], Decision Trees 

(DTs) [20–22], Naive Bayes (NB) [23,24], and Random Forests (RF) [25–27]. Though providing extremely high detection 

accuracy, these models are usually acting as black-box systems in other words, with few or no explanations of the logic 

behind their decisions. This obscurity complicates trust, accountability, and verification, particularly when it comes to the 

most critical cybersecurity domains. 
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The focus of most prior works is on the accuracy of classification without addressing the interpretability/transparency of 

models' decisions. They often neglect the importance of attack-specific features and do not reuse global and local 

explainability approaches; thus, the model insights do not enable the analyst to comprehend how to identify certain types 

of attacks. [28] Consequently, XAI is gaining increased importance with respect to augmenting classical IDSs such that 

high performance is guaranteed along with interpretability and trust. The increasing number and severity of cyberattacks, 

with a special focus on IoT and SCADA systems, emphasize the use of either intelligent or explainable IDSs [29,30]. 

State-of-the-art approaches demonstrate that real-time intrusion detection can be achieved effectively using deep learning 

techniques [31-33], however, in high-assurance contexts the lack of interpretability of such approaches renders these 

solutions insufficient. In this context, XAI offers two benefits. First of all, it establishes trust between human security 

analysts and the AI systems by providing them with understandable evidence that justifies the predictions made. Secondly, 

it increases transparency, enabling stakeholders to recognize the reasons behind model outputs thereby connecting accuracy 

to accountability. But the effectiveness of XAI hinges on the quality of training data and accurate feature labeling. 

To address this challenge, in this paper, we propose an end-to-end Explainable AI (XAI) framework specifically designed 

for robust DDoS detection in network environment, termed as XAI-IDS. In addition to this, our framework integrates deep 

learning with Convolutional Neural Networks (CNNs), and XAI techniques (SHAP (SHapley Additive exPlanations) and 

LIME (Local Interpretable Model-agnostic Explanations)) providing global and local interpretability of detection results. 

Unlike previous methods that utilized various datasets, we conduct our study using only the well-known NSL-KDD dataset 

[34] by filtering the DDoS attack records for the training and testing stages. Data acquisition, preprocessing, CNN-based 

classification, and explainability all methodological stages are included in the proposed XAI-IDS framework. It enables 

cybersecurity analysts not only to know whether a denial-of-service attack has taken place but also to understand why it 

thinks that way. Such a visual, explainable and interpretable IDS solution comes with robust performance measures, closes 

the important gap between performance and explainability in the IDS literature, and ensures that the security solutions are 

transparent, cannot be misinterpreted, and are ready for real-world deployment. 

 

2. RELATED WORK 

Artificial Intelligence (AI) has been an emerging field in recent years and particularly for Intrusion Detection Systems 

(IDS) in cyber security domain. Signature-based or statistical anomaly detection techniques were the mainstay for 

traditional IDSs, which, while successful against known threats, frequently had trouble detecting new or evolving attacks. 

In order to overcome these constraints, researchers have resorted to the application of AI techniques such as support vector 

machines, decision trees, and deep neural networks to enhance detection precision as well as scalability [34]. 

While AI-based IDSs have been proven to outperform others with promising results, the lack of interpretability remains an 

issue. Such gap has contributed to the rise of Explainable Artificial Intelligence (XAI) which aims to close the gap between 

performance and transparency, especially for critical systems in domains such as cybersecurity [35]. Some of the most 

studied XAI techniques include SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic 

Explanations), which allow for global and local understanding of model behaviour. These techniques are being 

increasingly employed to explain black box decisions in intrusion detection, enhancing the understanding and trust of 

security experts in automated systems [36]. 

Several studies suggested AI-based IDSs using deep learning, such as CNNs and RNNs to identify patterns from traffic 

data. Among them, CNNs have shown to be efficient in leveraging spatial relationships between features in structured 

datasets including NSL-KDD and CICIDS-2017 [37]. While these models often achieve high classification accuracy 

success rates, they fail to reveal useful interpretable results, especially in cases of adversarial attacks or when false positive 

results are produced. 

In addition, most of the approaches available in the literature aim at detection accuracy at the cost of interpretability. Few 

studies have investigated what features contribute to detection decisions, or how users can reverse-engineer why a particular 

input is classified as malicious. Many studies that do apply XAI methods shallowly implement these methods without 

thorough integration of interpretability through model pipeline [38]. However, there is only few XAI-based IDS 

frameworks focused specifically on DDoS detection, despite the high incidence and magnitude of DDoS attacks [39]. 

This work addresses these issues by proposing an extensive and explainable XAI-IDS that combines a deep learning CNN 

model with SHAP and LIME to identify Distributed Denial of Service (DDoS) attacks. Our framework aims to incorporate 

interpretability within the design and evaluation pipeline of the system, which sets it apart from existing studies that are 

posthoc in nature towards XAI. The objective is not just to predict malicious behavior accurately but to explain predictions 

sufficiently that cybersecurity analysts can comprehend what the model is doing and why, and act meaningful on 

predictions. 

In fact, Table I summarizes and conducts a significant analysis of the most prominent research studying AI- and XAI-

based intrusion detection systems. It outlines the methods implemented, datasets used, if explainability was considered, 

the main contributions of each method, and the principal limitations noted. Most of the studies proposed yet focus mainly 

on the effective intrusion detection of deep learning models like CNNs and RNNs, but these studies have not yet provided 
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an integrated explanation. While others have explored post-hoc XAI methods like SHAP and LIME, they have done so 

without any integration in the decision pipeline itself. Moreover, most researches still use generalized datasets and address 

multi-class attack detection but do not solve the issue with specific attacks such as DDoS. This gap highlights the need 

for a comprehensive framework such as our proposed XAI-IDS that integrates strong detection accuracy with model 

interpretability for DDoS detection specifically. 

TABLE I: SUMMARY AND ANALYSIS OF RELATED WORKS ON AI AND XAI-BASED IDSS 

Study / 

Method 

Technique Used Dataset XAI 

Applied 

Key Contribution Limitation 

[34] ANN, SVM NSL-KDD, 

KDD'99 

No Enhanced anomaly detection Lacks interpretability 

[35] SHAP, LIME + 
ML 

CICIDS-2017 Yes Introduced global and local 
explainability 

Post-hoc only 

[36] CNN + SHAP NSL-KDD Yes Visualized feature contributions Only global 

explanations 

[37] Hybrid ML 
Models 

CICIDS No Improved accuracy for multi-class 
attacks 

Black-box decisions 

[38] RNN, LSTM NSL-KDD No Time-based anomaly detection No feature insight 

[39] DNN + XAI NSL-KDD, BoT-

IoT 

Yes Interpretability in IoT attack detection Limited to single 

dataset 

 

3. METHODOLOGY 

In this research paper, we present a transparent and interpretable cybersecurity architecture called XAI-IDS (Explainable 

Artificial Intelligence for Intrusion Detection Systems), that aims to accurately identify and explain DDoS attacks in a 

network setting. While black-box machine learning based techniques are shown to produce good accuracy at the expense 

of interpretation, it is the proposed hybrid technique of deep learning with explainable AI (XAI) tools which lends not only 

to efficient detection but also to reasoning that follows the perfect XAI. The main focus of XAI-IDS framework is to gain 

robustness and performance of DDoS detection and enhance trust, accountability and response to incidents by means of 

interpretability. As shown in Table II, we propose several sequential stages for our methodology. 

TABLE II: METHODOLOGICAL STAGES OF THE PROPOSED XAI-IDS FRAMEWORK 

Stage Description 

1st Data Acquisition Loading the NSL-KDD dataset, focusing on selecting relevant features and records specific to DDoS attack scenarios. 

2nd Filtering Extracting only DDoS-related entries to reduce noise and target the detection task effectively. 

3rd Preprocessing Performing feature selection, normalization (e.g., Min-Max Scaling), and encoding labels into numerical format. 

4th Data Splitting Splitting the preprocessed dataset into training and testing sets, typically in a 70:30 or 80:20 ratio. 

5th CNN Model 

Training 

Designing and training a Convolutional Neural Network to detect patterns associated with DDoS traffic. 

6th Model 

Evaluation 
Using metrics like accuracy, precision, recall, and F1-score to assess the model's performance. Includes performance 

refinement through hyperparameter tuning and retraining if needed. 

7th Explainability Utilizing XAI methods (SHAP and LIME) to interpret the CNN’s decisions, identify key contributing features, and 

explain predictions. 

3.1 Dataset AcquisitionBottom of Form 

We use the NSL-KDD dataset, which is a standard dataset in the network intrusion detection domain. NSL-KDD is an 

upgraded version of the KDD Cup 1999 dataset, where both redundant records and class imbalance issue are alleviated, 

as they damage the training of machine learning models when using the older versions. It consists of labelled instances of 

network traffic, including normal traffic and several types of malicious traffic, like DoS, Probe, R2L (Remote to Local) 

and U2R (User to Root) traffic. 

We focus on Distributed Denial-of-Service (DDoS) attacks since they are one of the deadliest and common threats to 

network infrastructure for this research. Therefore, in order to narrow the analytical scope and increase the specificity of 

the detection model, we isolate and extract only the DDoS related records from the dataset. Focusing on DDoS traffic 

patterns allows us to reduce noise from random attack types, allowing the model to learn and generalize better based on 

inimitable characteristics of such attacks. Table III summarizes the main technical features of the NSL-KDD dataset used 

in this article. 

TABLE III: NSL-KDD DATASET ATTRIBUTES 

Attribute Description 

Source NSL-KDD Dataset (Canadian Institute for Cybersecurity) 

Structure 41 feature attributes + 1 class label (attack or normal) 

Label Type Categorical (normal, DDoS, Probe, R2L, U2R) 

Data Volume Includes both KDDTrain+ and KDDTest+ subsets 

Selection Focus Only DDoS-labeled records (e.g., ‘smurf’, ‘neptune’, etc.) 
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The extracted subset provides a well-defined basis for training and evaluating our proposed deep learning-based intrusion 

detection framework. This tailored dataset helps ensure that the developed model achieves higher accuracy and 

interpretability in detecting DDoS attacks, which are often characterized by specific temporal and volumetric patterns. 

3.2 Data Preprocessing 

This phase is a key step that helps in making the proposed XAI-IDS framework more effective. It converts the Raw NSL-

KDD dataset into tabular format to feed into the Deep learning models. This phase receives less noise and higher quality 

data to output to the CNN model. Table IV explains the preprocessing steps applied in this study. 

Table IV: Summary of Data Preprocessing Steps 

Step Technique Description 

Feature 
Selection 

Domain knowledge and correlation 
analysis 

Removes irrelevant/redundant features while preserving important attack 
indicators. 

Normalization Min-Max Scaling Scales numerical feature values into the [0,1] range to improve training stability. 

Label Encoding One-hot or Label Encoding Converts categorical labels into numerical format suitable for neural networks. 

All the pre-processing steps are essential for the efficacy of the intrusion detection framework. It improves predictive 

performance by eliminating redundant attributes which reduces computational burden and avoids overfitting. 

Normalization prevents features with larger numeric ranges from dominating the model learning process and ensures all 

features contribute equally to it. Lastly, this encoding of categorical labels enable the CNN to handle and understand 

various types of attacks. Following these steps meticulously fosters the framework's aptitude for discerning significant 

patterns within the input data, as well as its proficiency in executing precise DDoS attack detection. 

3.3 Data Splitting 

To ensure unbiased model evaluation and reliable performance measurement, the preprocessed dataset is divided into two 

distinct subsets: 80% for training and 20% for testing. The training subset is used to fit the CNN model, allowing it to learn 

relevant DDoS patterns, while the testing subset serves as unseen data to evaluate generalization. Figure 1 diagram outlines 

the data flow from preprocessing to model evaluation.  

 
Fig. 1. Data Splitting, Model Training, and Evaluation Workflow. 

3.4 Model Training: Convolutional Neural Network (CNN) 

Specifically, the 1D Convolutional Neural Networks (1D CNN) is implemented to accurately detect Distributed Denial-

of-Service (DDoS) attacks from talked tabular data. We have proposed the architecture specifically for learning spatial 

dependencies between feature dimensions of NSL-KDD dataset. The input layer of the CNN receives the feature vectors 

after preprocessing. These features are then forwarded through a series of convolutional layers that apply learnable filters 

to extract patterns relevant for detecting attacks. To perform down sampling and reduce dimensionality and computational 

efforts while mitigating overfitting, max-pooling layers are employed after every convolutional block. 

After this, a flattening layer flattens the output into a one-dimensional vector, which is followed by a dense (fully 

connected) layer that learns abstract features. And then, at the output layer, the neurons are activated using a sigmoid 

function to classify whether the instance is a DDoS attack or not. The general structure of this model is illustrated in Figure 

2. The configuration settings of each CNN layer are listed in Table 4, Training parameters like optimizer, loss function, 

learning rate, etc. are summarized in Table v. The CNNs were trained with a binary cross-entropy loss function, Adam 

optimizer, 32 batch size and for 50 epochs. We apply early stopping with a patience of 5 epochs to avoid overfitting and 

improve model generalization. 
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Fig 2. Visual architecture of the CNN used in the XAI-IDS framework, showing the progressive flow from input to classification. 

 

TABLE V. CNN ARCHITECTURE CONFIGURATION 

Layer Type Description 

Input 1D vector of preprocessed features 

Conv1D 64 filters, kernel size = 3, activation = ReLU 

MaxPooling1D Pool size = 2 

Conv1D 128 filters, kernel size = 3, activation = ReLU 

MaxPooling1D Pool size = 2 

Flatten Converts 2D feature maps into 1D vector 

Dense 64 neurons, activation = ReLU 

Dropout Dropout rate = 0.5 to prevent overfitting 

Output (Dense) 1 neuron, activation = Sigmoid (for binary classification) 

TABLE VI. CNN TRAINING SETUP 

Parameter Value 

Loss Function Binary Cross-Entropy 

Optimizer Adam 

Batch Size 32 

Epochs 50 

Learning Rate 0.001 

Early Stopping Enabled 

Patience 5 epochs 

3.5 Model Evaluation 

To evaluate the performance of the trained CNN model in detecting Distributed Denial-of-Service (DDoS) attacks, we 

compute four key classification metrics: Accuracy, Precision, Recall, and F1-Score. These metrics provide a comprehensive 

understanding of the model's effectiveness, especially in scenarios where class imbalance may exist. 

1. Accuracy measures the overall proportion of correctly classified instances, including both DDoS and normal traffic. It 

is defined as (eq. 1): 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 +  𝑇𝑁)

(𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)
 

2. Precision quantifies the proportion of correctly predicted DDoS attacks out of all predicted positive instances. It is 

particularly important to minimize false positives and is calculated as (eq. 2): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
 

3. Recall (also known as sensitivity) indicates the model's ability to correctly identify all actual DDoS attacks, helping to 

minimize false negatives. It is computed as (eq. 3): 
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𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
 

4. F1-Score provides a harmonic mean of precision and recall, offering a balanced evaluation metric especially useful 

when dealing with imbalanced datasets. The F1-Score is given by (eq. 4): 

𝐹1 =
2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
 

 

In this context TP stands for True Positives, TN stands for True Negatives, FP represents False Positives and FN indicates 

False Negatives. These evaluation metrics, when looked at together, allow for a holistic and methodical evaluation of the 

model's dependability, discriminative ability, and general robustness in identifying DDoS attacks. 

If the performance after the first assessment of the trained CNN model has not reached a certain score (usually equal to or 

greater than an F1-score of 0.85), then the refinement phase is initiated. 04. Evaluating the model this step helps ensures 

that the model is not only performing well on the training data but also generalizing well to unseen network traffic and 

detects DDoS attacks well. 

Hyper-parameter tuning is the first part of such a process, where critical training parameters are tuned to aid model 

learning. Systematic variation of hyper-parametrs such as the learning rate, kernel size, dropout rate, the number of 

convolutional filters, and the batch size is undertaken. By doing so, these calibrations allow for better fitting of the model 

to the nuanced relationships that underlie malicious traffic, while avoiding the pitfalls of overfitting or underfitting. After 

the tuning step, the model is retrained using this newfound information. At this point, the CNN is repurposed on the 

original training dataset, taking advantage of the adjusted parameters to enhance pattern recognition and decision-making 

ability. It then retests the model with the same metrics of accuracy, precision, recall, and F1-score on the testing dataset 

after retraining. In the event the model still fails to exceed some minimally acceptable performance threshold, we repeat 

the cycle of tuning, retraining, and evaluation. The iterative process that ends up with a much more precise, stable and 

reliable detection model. The satisfactory performing optimized model is then directed towards the explain ability stage. 

In this subsequent stage (described in Section 3.7), Explainable AI techniques like SHAP and LIME are utilized to interpret 

and justify the model’s predictions, making clear the basis for detection and building trust in operational scenarios of 

cybersecurity. 

3.6 Explainable AI Integration (XAI) 

After reaching acceptable results with the CNN, we apply some techniques of explainable Artificial Intelligence (XAI) for 

interpreting the CNN model in terms of influencing factors. This provides humans understandable analysis (make decision) 

about how and why the model is interpreting a networks connection as DDoS attack. We utilize two popular XAI methods, 

namely SHAP (Shapley Additive explanations) and LIME (Local Interpretable Model-Agnostic Explanations) to this end. 

SHAP uses cooperative game theory to calculate the contribution of every individual feature to the model’s final decision. 

This allows the features to be ranked according to influence, giving you a global view of your model’s behavior throughout 

all the samples. 

Conversely, LIME emphasizes local interpretability and meets this requirement by learning a simple surrogate function 

locally around each individual prediction. This enables instance-level explanations to see which features drove a specific 

decision (attack, normal Traffic). Utilizing these XAI approaches allows not only validation of model fairness and 

reliability, but also helps build better user trust in the system, which is particularly importance in cybersecurity 

environments where accountability and transparency are key. In order to improve transparency and user trust, a suite of 

explainability tools is applied to the trained CNN model. Both SHAP and LIME (see Figure 3) are used to interpret 

predictions; SHAP provides global importance scores for each feature and LIME explains individual predictions by 

approximating the local decision boundary. A hybrid method like this enables cybersecurity analysts to deeply comprehend 

and verify the choices made by the XAI-IDS model. 
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Fig 3. XAI Integration Flow in the XAI-IDS Framework 

The entire mining steps of the proposed XAI-IDS pipeline are depicted in Figure 4. This bridges all paths from data 

collection and preprocessing, CNN model training and evaluation, to the application of explainable AI utilities using SHAP 

and LIME. The diagram above gives summary of the framework’s end-to-end workflow comprising the interpretable 

DDoS attack detection framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4. Complete Workflow of the Proposed XAI-IDS Framework 

In conclusion, the XAI-IDS solution benefits from the performance of deep learning and the interpretability of explainable 

AI to deliver a DDoS detection mechanism with good accuracy and transparent model insight. The methodical approach 

of structured preprocessing, Congruent CNN training, iterative optimisation and post-trained XAI-based interpretation 

allows to produces a robust and programmable yet interpretable and trustworthy solution to modern cybersecurity 

challenges, with appropriate information learnt in a reasonable time-frame. 

 

4. RESULTS AND DISCUSSION 

In this section we describe the experimental results obtained for the proposed XAI-IDS framework that incorporates a CNN 

with Explainable Artificial Intelligence (XAI) techniques for the detection of Distributed Denial-of-Service (DDoS) 

attacks from the NSL-KDD dataset. The outcomes are interpreted across two important perspectives-- (1) the quantitative 

performance analysis of the trained CNN model, and (2) qualitative interpretable analysis through SHAP and LIME 

explanations. 

The CNN model was trained on filtered data preprocessed to reduce the noise of non-DDoS instances. Standard 

classification metrics Accuracy, Precision, Recall, and F1-Score were computed on a reserved test set to measure 
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performance. These metrics give a complete insight into how well the model can detect DDoS attacks with minimum false 

positives and false negatives. Besides the numerical results, this section also presents a confusion matrix and metric 

comparison plots to further substantiate the metrics. Additionally, the interpretability of model predictions is evaluated 

with SHAP (SHapley Additive exPlanations) [20] and LIME (Local Interpretable Model-Agnostic Explanations) [21]. 

These tools explain the most significant features that led the model to those decisions, on a global scale across the dataset 

as well as locally for specific samples. Thus, the knowledge gained through XAI findings improve transparency and justify 

the importance of the most important features used by the network to differentiate benign behavior from DDoS traffic. 

Overall, this joint work highlights the effectiveness, reliability, and explainability of the XAI-IDS framework in detecting 

cybersecurity threats, enabling a practical tool for a real-world deployed network defence system. 

4.1 Model Performance Evaluation 

In this section, we evaluate the proposed CNN-based intrusion detection model in the context of the XAI-IDS framework, 

which was assessed on the test subset of the NSL-KDD dataset. The DDoS and normal traffic labels were then filtered 

and pre-processed to retain only DDoS attacks and normal traffic as a separate subset for data analysis. Four metrics were 

used to evaluate the performance of the model: Accuracy, Precision, Recall, and F1-Score. Together, these metrics 

provide a comprehensive evaluation of classification performance and stability. CNN model performance on DDoS 

detection is presented in Table 7. 

TABLE VII. CNN MODEL PERFORMANCE ON DDOS DETECTION 

Metric Value 

Accuracy 0.94 

Precision 0.93 

Recall 0.95 

F1-Score 0.94 

 

These results show good classification ability; With an accuracy of 94%, this means that the most instances (normal & 

attack) were positively classified. With a high recall of 95%, the model does well to catch most true DDoS events, 

minimizing false negatives. At the same time, its precision of 93% shows a low false positive rate, important to ensure no 

alert in real world security system leads to unnecessary fears. 

With an F1-Score of 94%, it reassures a well-balanced trade-off between precision and recall showing that the model is 

well suited for intrusion detection where classes being predicted are not equally distributed. These excellent improvements 

validate iterative optimization and hyperparameter tuning's strengths on reaching our benchmark performance (F1 ≥ 0.85) 

and achieving strong generalization. In addition to these metrics, a confusion matrix was produced to provide a visualization 

of the classification breakdown. As shown in Figure 5, the CNN model correctly identified 190 of 200 instances normal 

traffic and 185 of 200 instances DDoS attack. Hence, This Reaffirms High Sensitivity and Specificity of the model, thus 

demonstrating its efficacy for practical implementation in real-time DDoS detection systems. 

 
Fig 5. CNN confusion matrix for DDoS detection. 
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4.2 Explainability Results Using SHAP and LIME 

Besides strong predictive performance, interpretability is an additional focus in deploying an intrusion detection system. 

In order to improve the transparency of the model working and user' trust we used two popular Explainable Artificial 

Intelligence (XAI) techniques- SHAP (SHapley Additive Explanations) and LIME (Local Interpretable Model-Agnostic 

Explanations). These tools are utilized to visualize and interpret the internal decision-making logic of the CNN model 

created within the XAI-IDS framework. 

Global feature importance over the testcase was evaluated using SHAP analysis. SHAP quantifies the contribution of each 

feature to the output of a model by calculating Shapley values. Figure 6 shows the top features for the detection of DDoS 

attacks with src_bytes, dst_host_srv_count and flag being the most influential. These results are in line with domain 

knowledge, whereby abnormal data volume and repeated service requests are frequent indicators of malicious traffic. The 

SHAP plot gives a ranking of all these features in a visually intuitive way to show you what is important for the model. 

Unlike LIME, which needs to find an explanation locally for single samples. Instead, it constructs interpretable surrogate 

models that proxy the CNN behavior in the neighborhood of a particular prediction. For example, in Figure 7, we can see 

those high values of src_bytes and unusual duration were the main contributors to the classification based on one sample 

identified as DDoS attack. These insights justify the rationale for individual predictions and enable analysts to confirm 

and act on the models’ outputs with more confidence. SHAP and LIME together complement each other and provide both 

global and local interpretability which drastically enhance the explainability layer in XAI-IDS framework. This dual-layer 

method not only boosts trust but also accountability and operational readiness in cybersecurity environments, where 

understanding the rationale behind decisions is just as important as making them. 

 
Fig 6. SHAP-based feature importance scores showing the top five features contributing to the CNN-based DDoS detection in the XAI-IDS framework. 
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Fig 7. LIME explanation showing the feature contributions for a single prediction classified as a DDoS attack by the CNN model. 

 

 

 

 

 

 

5. DISCUSSION 

This incorporation of explainability into high-performance intrusion detection models signifies a breakthrough in the field 

of cybersecurity. In addition to achieving strong detection metrics, the suggested XAI-IDS framework also provides 

interpretable insights explaining how predictions are made, bridging the often-expressed gap between model accuracy and 

trust-of-operation. This trade-off is of paramount importance in real-world security scenarios where misclassifications may 

have costly implications, and stakeholders need explanations for the outcomes of automated processes [40-45]. 

Compared to conventional machine learning-based IDSs—such as Support Vector Machines (SVM), Decision Trees, and 

Random Forests—which typically operate as black-box models, the XAI-IDS framework offers an interpretable decision-

making process through the use of SHAP and LIME. This dual-layer explainability ensures that security analysts are not 

only informed about the outcome (e.g., whether a traffic instance is benign or malicious) but also understand why the model 

reached that conclusion. 

A few comparative analyses of the proposed framework and some selected studies from the literature are provided in Table 

8. While we find that while other models may achieve similar performance, few models incorporate any form of 

explainability by design, and of those, even fewer support both global and local interpretability. For example, while the 

DNN method in [28] provides a global explanation with SHAP, it is unable to provide understandings at the instance level. 

Whereas, instead, you can get global explanation with SHAP and local explanations with LIME that the overall range of 

interpretability is covered with the XAI-IDS framework. 

In addition, their robustness the framework across performance metrics, reflected by an F1-score = 0.94, suggests that the 

model can also cope with class imbalances and that it generalizes well to unseen data. A high recall (0.95) is particularly 

important in the context of DDoS detection where undetected attacks could significantly disrupt network services. 

Essentially, this makes explainability-led design a useful mechanism towards having an AI system that is compliant with 

new regulations and policies like GDPR & NIST AI Risk Management Framework that call for greater transparency and 

accountability in AI systems. Furthermore, it improves operational usability by enabling cybersecurity analysts to follow 

and substantiates the reasoning behind the detection, hence bolstering trust and adoption in real-world deployments 

TABLE VIII. COMPARISON OF XAI-IDS WITH OTHER IDS APPROACHES 

Study Accuracy Precision Recall F1-Score Explainability 

Proposed XAI-IDS Framework 0.94 0.93 0.95 0.94 SHAP + LIME 

Ref. [13] CNN-Based IDS 0.91 0.90 0.89 0.895 None 

Ref. [17] SVM + Feature Selection 0.89 0.88 0.87 0.875 None 
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Ref. [24] Random Forest + PCA 0.90 0.89 0.88 0.885 None 

Ref. [28] DNN + SHAP 0.92 0.91 0.93 0.92 SHAP only 

 

6. CONCLUSION 

This paper proposed XAI-IDS, an interpretable, deep learning-based intrusion detection framework innovatively designed 

for the detection of Distributed Denial-of-Service (DDoS) attacks on the NSL-KDD dataset. In contrast to traditional black-

box models, the developed XAI-IDS system is a combination of CNNs with Explainable Artificial Intelligence (XAI) 

techniques, specifically SHAP and LIME, which increases the predictive performance and transparency. The experimental 

results show that the proposed CNN model classifier has an accuracy, precision, recall, and F1-score of 94%, 93%, 95%, 

and 94%, respectively, highlighting its robustness classifying DDoS attack traffic with a few false alarms. The effectiveness 

of preprocessing, feature selection as well as the iterative optimization-based strategies recognised high generalisation 

capability of the model. However, integration with XAI tools offered actionable interpretability. SHAP provided a global 

perspective on feature importance over the whole dataset and pinpointed significant features like srv_count and 

dst_host_same_srv_rate, while LIME facilitated the instance-level interpretation of the model and allowed analysts to see 

how certain features impacted specific predictions. This dual-layer explainability ensures that security teams not only have 

faith in the outputs, but can also answer for and track the behavior of the system itself — a key to implementations in 

critical infrastructure and regulated environments. The XAI-IDS framework consistently produces higher accuracy 

detection and provides better interpretability than many other established IDS. This integrated perspective reflects the 

urgent need for transparent and accountable AI systems in cybersecurity, particularly in identifying more advanced 

cyberspace Army attacks. Future research may extend the framework for multi-class classification or utilize real time data 

streams or apply learning within federated learning environments for distributed intrusion detection as future work. XAI-

IDS makes a significant impact on developing trustworthy, intelligent, and explainable cybersecurity systems in the long 

run. 
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