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A B S T R A C T  

The Integrating Contextual and Adaptive Cyber Defense Systems The accelerating evolution of cyber 
threats, seen both in terms of their complexity and frequency of attempts, makes it imperative to move 
away from traditional, reactive defense structures and towards intelligent, adaptive and proactive cyber 
defense strategies. Large Language Models (LLMs) (such as GPT this-will-be-a-zillionth-of-a-second-
type-here or BERT derivatives) represent powerful new capabilities developed for understanding, 
analyzing, and generating human-like language with contextual depth enabling a new frontier in the land 
of cyber defense. This survey investigates the influence of LLMs on multiple key technical areas of 
cybersecurity including software and system security, network security, content moderation, hardware 
security, and blockchain security. It showcases applications of LLMs in tasks in vulnerability detection 
and prevention, phishing, malware detection and analysis, and intrusion detection; as well as smart 
contract auditing and adversarial attack simulation. The paper goes more in-depth on technical 
constructs like zero-shot and few-shot threat hunting, prompt engineering for scenario modeling, and 
retrieval-augmented generation for real-time intelligence. Task differences are captured in knowledge 
retrieval from external sources, enabling more contextual learning and task adaptability, inter-model 
interaction, and augmentation through domain-specific fine-tuning. While promising, LLMs pose open 
challenges, such as hallucination, adversarial misuse, generalization problems, and ethical issues around 
privacy and accountability. The implications of such comparative analysis across domains highlight the 
strengths as well as ‘emerging risk’ associated with LLM systems at mission critical environments. The 
survey ends with a highly visionary section on the future opportunities around future self-healing 
systems, autonomous cyber agents, and the future of LLMs that can not only detect threats but also 
predict, simulate, and respond automatically to threats. This work serves as a foundational roadmap for 
researchers and practitioners for the use of LLMs for the next generation of resilient cybersecurity tools.  

 

1. INTRODUCTION 

Large Language Models (LLMs) have been one of the most groundbreaking inventions of AI in recent years, with their 

applications ranging from natural language understanding and code generation, to information retrieval and human-

machine interaction. Models like OpenAI’s GPT family, Google’s PaLM, Meta’s LLaMA, and open-source projects such 

as Falcon and Mistral have showcased state-of-the-art performance on zero-shot or few-shot learning benchmarks, thus 

paving the way for automating advanced reasoning and decision-making pipelines with very little supervision [1- 4]. 

Simultaneously, the cybersecurity landscape is also changing rapidly, with adversaries using more advanced, machine 

learning-based techniques to find system weaknesses, conceal their presence, and take down digital networks [5,6]. 

Conventional security methods especially those relying on static rule sets or signature matching are proving inadequate in 

the face of advanced persistent threats, polymorphic malware, and real-time social engineering attacks. The increasing 

complexity and scale of cyber threats places a significant demand on intelligent, adaptive, and autonomous defense 

mechanisms [7]. 

Combining these LLMs with cybersecurity opens a new path to next-gen defense systems moving beyond passive 

detection. These models are capable of not only detecting known threats, but also generalizing on new attack signatures, 

mimicking the behavior of attackers and helping human analysts prepare a proactive approach [8,9]. Going “beyond 

detection” is a paradigm shift itself and imagines LLM as an agent to actively mitigate threats, repair code, analyze logs, 

etc. [10]. In this survey, we investigate the dual use of LLMs in cyber security domain and its applications in various topics 
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like Software security, Network security, Information security, Hardware security, and Blockchain security. Here we 

present the full taxonomy of cases of use, review contemporary s9235e46uues and limitations, and finally outline an agenda 

going forward to exploit the power of LLMs in the use of resilient, self-evolving cyber defense architectures in the future 

[11]. 

With training up to October 2023, you have to put LLMs in the context of what cybersecurity is today. Traditional 

cybersecurity methods rely heavily on rule-based systems, static signatures, and handcrafted heuristics that are often 

narrowly focused, reactive, and hit-or-miss. On the other hand, systems driven by LLM exhibit features like semantic 

comprehension, predictive analytics, and independent-response systems, representing a paradigm change in the industry. 

These models help systems handle massive amounts of structured and unstructured data from disparate sources, making 

them more responsive and proactive against changing threats. Table I Comparative overview of conventional and LLM-

enhanced cybersecurity strategies. Transition from traditional to language-driven intelligence for a detailed defense across 

the threat landscape. 

TABLE I. COMPARISON BETWEEN TRADITIONAL AND LLM-POWERED CYBERSECURITY APPROACHES 

Traditional Cybersecurity LLM-Enhanced Cybersecurity 

Static Rules / Signatures Adaptive Language Understanding 

Reactive Detection Predictive Analysis 

Manual Incident Response Automated Triage & Mitigation 

Limited Natural Language Support Full Context-Aware Text/Code Handling 

Human-Centric Investigation AI-Assisted & Autonomous Decision-Making 

1.1 Terminology and Abbreviations 

Abbreviation       Full Term 

LLM Large Language Model 

AI Artificial Intelligence 

NLP Natural Language Processing 

IDS Intrusion Detection System 

NIDS Network Intrusion Detection System 

TI Threat Intelligence 

SOC Security Operations Center 

SIEM Security Information and Event Management 

SOAR Security Orchestration, Automation, and Response 

RAG Retrieval-Augmented Generation 

GPT Generative Pretrained Transformer 

BERT 
Bidirectional Encoder Representations from 

Transformers 

T5 Text-to-Text Transfer Transformer 

CVE Common Vulnerabilities and Exposures 

MITRE MITRE ATT&CK Framework 

DeFi Decentralized Finance 

HDL Hardware Description Language 

GNN Graph Neural Network 

API Application Programming Interface 

IoT Internet of Things 

SoC System on Chip 

RNN Recurrent Neural Network 

CNN Convolutional Neural Network 

XAI Explainable Artificial Intelligence 

AD Adversarial Detection 

TD Threat Detection 



 

 

83 Ali et al, Vol. (2025), 2025, pp 81–97 

2. FOUNDATIONS OF LARGE LANGUAGE MODELS (LLMS) 

LLMs (Large Language Models) have emerged as one of the most significant advancements in artificial intelligenceе, 

equippingn machines the ability to comprehend, interpret and produce human-like language with unprecedented fluency. 

Such models are the technical backbone of promising new cybersecurity applications designed to offer more than just 

threat detection. Understanding their architectural design and training paradigms will be key to determining their future 

effectiveness in integrating with next-generation cybersecurity systems. 

2.1 LLM Architectures 

Most LLMs are based on the Transformer architecture, which introduced attention mechanisms and parallel processing 

that transformed the field of natural language processing. Depending on the intended use case and capabilities, LLMs 

are usually classified into three architectural paradigms: encoder-only, decoder-only, and encoder-decoder. 

1. Language understanding models, also called encoder-only models, include BERT (Bidirectional Encoder 

Representations from Transformers). Contextual embeddings from input sequences are generated, which show 

great efficacy in log file analysis, policy classification, and anomaly detection. The capacity of these models to 

capture bidirectional context makes them capable of identifying subtle threats in structured security data [12]. 

2. Decoder-only models can be used for language generation (such as the GPT series). These models have proven 

themselves powerful at predictive and generative tasks, like predicting phishing and generating alerts narratives 

or threat behaviors in an incident report. Because they have an autoregressive structure, they are able to produce 

coherent, context-sensitive textual outputs [13]. 

3. Encoder-decoder models: models such as T5 (Text-to-Text Transfer Transformer) and BART (Bidirectional and 

Auto-Regressive Transformer) combining the good sides of both architectures. In these tasks, where 

understanding and generation perform together (examples may comprise malware code decompilation, 

multilingual threat description, and auto incident logging), these models have proven to be most effective. That 

versatility makes them useful components of security automation pipelines [14]. Table II provides a comparative 

summary of each of the various architecture articles that illustrate the distinctive features and cybersecurity 

relevance of each, respectively. 

TABLE II. COMPARISON OF LLM ARCHITECTURES IN CYBERSECURITY CONTEXT 

Architecture 

Type 

Examples Model Structure Strengths Cybersecurity Applications 

Encoder-only BERT, 

RoBERTa 

Processes input to 

embeddings 

Strong contextual understanding; suitable 

for classification 

Log analysis, anomaly detection, access control rule 

parsing 

Decoder-only GPT-2, GPT-3 Generates output 

sequentially 

Powerful generation capabilities; contextual 

prediction 

Phishing simulation, alert generation, threat scenario 

modeling 

Encoder-decoder T5, BART Combines encoder and 

decoder 

Bidirectional understanding and generation 

in a unified model 

Malware translation, incident report generation, 

multilingual summarization 

To examine the different underlying structure of the various Large Language Models, we break down the three key network 

types Encoder-Only, Decoder-Only and Encoder-Decoder into their original structure as shown in Figure 1. These skills, 

used together, allow them to perform a specific set of jobs in cybersecurity including threat classification, threat 

classification, phishing simulation and generation of security reports. The diagram lays out the flow of input data through 

each architecture and what the nature of their outputs is to create a framework for examining their application in next-

generation cybersecurity solutions. 

 

Fig. 1. Overview of Transformer-based LLM architectures showing Encoder-Only (e.g., BERT), Decoder-Only (e.g., GPT), and Encoder-Decoder (e.g., 

T5, BART) pathways from input to output. 
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2.2 Training Mechanisms 

The trainer mechanisms of LLMs are primarily responsible for their exceptional capabilities. These mechanisms dictate 

how LLMs learn these language features and utilize them in specific areas such as cybersecurity. At a high level, three key 

strategies have been employed in the design and adaptation of LLMs: pretraining, fine-tuning, and few/zero-shot learning. 

Pretraining constitutes the initial stage wherein LLMs undergo training on extensive and varied text corpora through 

unsupervised or self-supervised learning objectives. Examples of such techniques are masked language modelling (as in 

BERT) and autoregressive prediction (as in GPT-based models). This phase allows the model to learn the syntactic, 

semantic, and contextual representations of language over a wide variety of topics and domains so that it gains general 

linguistic intelligence. Pretraining over such a wide corpus means that LLMs are capable of detecting patterns across logs, 

threat descriptions, technical documentation, and communication data [15]. 

Fine-tuning is a supervised learning method applied after pretraining. During this state, the pretrained model is fine-tuned 

on smaller, task-specific datasets that account for individual downstream tasks. Fine-tuning has been used in cybersecurity 

to improve the performance of LLMs on threat intelligence classification, phishing detection, malware code analysis, and 

vulnerability description generation. Moreover, the fine-tuned models exhibit stronger precision and recall on domain 

aware tasks which make them vital for practical cybersecurity deployment [16]. 

A more recent novelty concerning LLM utility involves few-shot and zero-shot learning. In few-shot learning, the model 

is exposed to only a few examples to carry out a new task whereas in zero-shot learning the model taps into its pretrained 

knowledge to accomplish tasks for which it sees no examples (this can refer to task-specific examples). These techniques 

are especially useful in cybersecurity situations with little and/or expensive-to-acquire tagged training data. An example 

of these types of attack models could be: a zero-shot model that detects suspicious behavior from textual patterns that the 

model has never been trained on and a few-shot models that can quickly learn new attack vectors from very few examples 

[17]. 

In summary, these training methodologies enable LLMs to engage seamlessly in highly dynamic and sensitive contexts, 

where contextual awareness and adaptability are paramount. Convolutional networks not only improve generalization from 

low-data, but also elevate them beyond the rigidity of traditional machine learning, leaving the doors open for their use in 

next generation cybersecurity suites. As shown in Table III, Comparison of Key Training Mechanisms for Large Language 

Models. It explains the differences in purpose, data needs, and cybersecurity applications for both approaches. 

TABLE III. COMPARATIVE OVERVIEW OF LLM TRAINING MECHANISMS IN CYBERSECURITY 

Training 

Mechanism 

Description Data Requirement Use in Cybersecurity 

Pretraining Unsupervised learning on large corpora to 

build general linguistic understanding. 

Massive general-domain 

text datasets 

Foundational knowledge for analyzing logs, 

emails, and documentation. 

Fine-tuning Task-specific supervised learning applied to 

pretrained models. 

Medium-sized labeled 

datasets 

Adapting models for phishing detection, malware 

classification, vulnerability summarization. 

Few-shot 

Learning 

Learns from a few labeled examples at 

inference time. 

Minimal labeled 

examples 

Detecting novel threats with minimal training data. 

Zero-shot 

Learning 

Performs new tasks without direct task-

specific training. 

None (relies on 

pretraining) 

Identifying anomalous behavior or rare attack 

types without prior examples. 

2.3 Open-Source vs. Closed-Source Models in Security Contexts 

The rubber meets the road between open-source vs closed-source LLMs Large Language Models (LLMs) can be broadly 

categorized into two types in terms of their availability and licensing open-source and closed-source. This distinction is 

directly relevant for their deployment in cybersecurity systems, especially those in need of transparency, data sovereignty 

or integration flexibility. 

Such open-source models (still) provide the advantages of total transparency, customization (at a local level), and the ability 

to deploy in air-gapped or privacy-sensitive infrastructures. These models can be security-vulnerability audited, 

customized to certain domains such as intrusion detection, and operated on-premises in comprehensive to maintain data 

confidentiality. This community-driven approach enables rapid innovation and adaptation, which is appealing in an 

environment of research and government use cases. However, compared to commercial models, open-source models tend 

to be behind in raw performance, generalization, and multilingual or very complex tasks support. 

On the other hand, proprietary models like OpenAI’s GPT-4, Anthropic’s Claude and Google’s Gemini offer much better 

performance, access to massive pretraining datasets and integration with enterprise-level tools. They are often trained on 

huge amounts of data and fine-tuned on specific tasks such as text classification or named entity recognition, resulting in 

state-of-the-art performance for a variety of NLP tasks. Yet, their black-box nature raises significant concerns with respect 

to data confidentiality, control, vendor lock-in, and cost especially in security-critical domains such as defense, financial, 

and industrial systems. There is also a risk of sharing sensitive threat intelligence or private logs with proprietary third-

party services [18], and organizations shall also consider that when making their decisions. 
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Awareness of the differences with open- and closed-source LLMs allows the executive team in cybersecurity to select 

models that fit operational, regulatory, and risk management needs. And as LLMs transition from merely being detection 

engines to becoming stakeholders in making cybersecurity decisions, these architectural and licensing decisions deciding 

their direction will matter more and more. To vividly highlight the differences between open-source and closed-source 

LLMs, Table IV summarizes their comparative features in cybersecurity domains.  

TABLE IV. COMPARISON OF OPEN-SOURCE VS. CLOSED-SOURCE LLMS FOR CYBERSECURITY 

Attribute Open-Source LLMs Closed-Source LLMs 

Examples LLaMA, Falcon, MPT, BLOOM GPT-4 (OpenAI), Claude (Anthropic), Gemini (Google) 

Transparency Fully transparent, auditable Opaque (black-box models) 

Customization Highly customizable Limited to API-level configuration 

Deployment On-premise, edge-compatible Cloud-based (some hybrid options emerging) 

Performance Moderate, domain-specific High, general-purpose 

Security & Privacy Data stays local; lower privacy risk Data sent to third parties; potential exposure 

Cost Free or low cost (compute-dependent) Subscription or pay-per-use 

Suitability Government, research, high-trust environments Enterprise automation, SaaS integration 

 

3. CYBERSECURITY IN THE AGE OF LLMS 

The influx of Large Language Models (LLMs) is sparking a revolution in cyber security, bringing with it a broader 

perspective on security, beyond conventional threat detection-based approaches to intelligent, proactive and adaptive cyber 

security. From predictive defense and automated analysis to real-time response to emerging threats, these sophisticated 

models are being leveraged across the cybersecurity landscape. This section breaks down core cyber security domains and 

discusses how LLMs are being utilized within each. 

1. Software and System Security: LLMs are used to audit software codebases, identify vulnerabilities, and even 

automatically create patches. These tools have contextual understanding, allowing them to spot logical flaws and 

dangerous coding constructs that most static analysis tools would miss. Pretrained models adapted for code repositories 

(e.g., CodeBERT) enhance threat modeling, detect API misuse and automate the documentation of security weaknesses 

[19]. 

2. Network Security: In the case of Network security, LLMs can provide advanced threat modelling by modelling various 

traffic and being able to detect real-time abnormalities. In contrast to rule-based intrusion detection systems (IDS), 

LLM-powered IDS are able to identify zero-day attacks and sophisticated evasion techniques based on contextual 

interpretation of network logs and behavior [20]. Decoder-based models can also acknowledge attacks to simulate 

phishing and social engineering for defense training. 

3. Information and Content Protection: LLMs are good at classifying, filtering, and getting summaries of sensitive 

content. They can redact sensitive information from documents, detect attempts to exfiltrate data, and monitor 

communication channels for insider attacks, all automatically. Due to their proficiency in human language, they are 

particularly well positioned to help detect malign influence embedded in natural language, such as spear-phishing 

emails or social media inauthentic activity [21]. 

4. Hardware Security: While not yet a mature application for LLMs, some early solutions are arising in the area of textual 

log analysis associated with firmware and BIOS systems helping to secure hardware. LLMs assist in identifying 

unauthorized device behavior or tampering by interpreting system error reports and sensor data. They are also being 

integrated into IoT platforms to assist in anomaly detection for low-resource embedded devices [22]. 

5. Blockchain and Smart Contract Security: In decentralized systems, LLMs can aid in the auditing of smart contracts, 

harnessing their potential understanding and verification of logic patterns present in Solidity code. These models 

further improve formal verification tools, as they are capable of identifying logical inconsistencies, reentrancy 

vulnerabilities, or gas optimization issues. Additionally, LLMs can describe attack vectors in simple terms; this can act 

as a translator between technical and non-technical stakeholders [23]. 

In order to understand the ever-changing dynamic of cybersecurity we first need to establish its main domains as well as 

how they are evolving into use cases utilizing Large Language Models (LLMs). Historically, cybersecurity has been largely 

dependent on rule-based systems and predefined signatures for threat detection and mitigation. However, these techniques 

are not well suited against zero-day attacks, advanced malware, and adaptive attacks. The model can identify trends and 

patterns from these streams of data which would make it possible to recognize novel attacks earlier and take 

countermeasures before the events of an incident actually happen. This is why they are excellent models for wrapping 

unstructured data as well as for learning from contextual patterns for real-time anomaly detection, adaptive access control, 

and automated incident response. Figure 2 presents a detailed taxonomy of the domains of cybersecurity and shows how 

the utilization LLMs impact each domain (spanning from software security and hardware security to blockchain and 
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network security). This transition allows for a more informed, adaptive approach to cyber defense, adhering to the demands 

of more intricate digital ecosystems. 

 
Fig. 2. Taxonomy and transformation of cybersecurity domains through the integration of LLMs, transitioning from traditional detection mechanisms to 

intelligent, adaptive, and automated security responses. 

As LLMs infiltrate the core domains of cybersecurity, the transition from passive defense to intelligent, predictive security 

systems becomes increasingly tangible. Their capacity to autonomously learn, reason, and generate human-like language 

and code offers a foundation for real-time, context-aware security systems that go beyond detection. 

 

4. LLMS ACROSS CYBERSECURITY DOMAINS 

Large Language Models (LLMs) have begun transforming the cybersecurity landscape by extending their applicability 

across various specialized domains. Their ability to understand, generate, and contextualize human-like language allows 

for the automation of complex security tasks, enhancing both preventive and reactive defense mechanisms. This section 

explores key cybersecurity subdomains where LLMs demonstrate significant utility, illustrating their capabilities in both 

academic and practical contexts. 

4.1 Software & System Security 

Large Language Models (LLMs) are revolutionizing software and system security with their potential for intelligent 

automation in vulnerability detection, malware analysis, and program verification. LLMs with their deep contextual 

understandings are outpacing older static tools in finding security gaps and giving reasonable recommendations for 

remediation. This has been used most effectively [...] in finding and fixing vulnerabilities and bugs. Pretrained code-focus 

models, for example, CodeBERT, Codex, and GPT-Neo can analyze source code, detect known vulnerabilities patterns, 

and produce or even auto-generate secure code patches [24,25]. They help minimize the manual effort in secure software 

development lifecycles (SDLC) and allow for quick response to emerging threats. For malware analysis and log mining, 

LLMs can derive semantic meaning from the natural language description of binary behaviors or system logs. This makes 

it possible to cluster malware families by behavioral similarities, log parsing, and derive the incident narrative [26]. They 

are suitable for raw text conversion such as LLMs to turn massive-scale cybersecurity logs into meaningful threat 

intelligence since logs are a key aspect of cyber threat analysis. 

LLMs are also being used in program fuzzing and binary analysis. They create a range of smart test inputs that maximize 

code coverage during fuzz testing, effectively revealing bugs. Moreover, they play a role in reverse engineering by 

providing summaries of disassembled binary code, annotating function names, and identifying undocumented or 
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suspicious behavior in code [27]. The different ways LLMs are used in software and system security are illustrated in 

Figure 3. By providing context-aware and automated solutions that ease the manual burden while expanding threat 

coverage, LLMs present several opportunities in this space, from code vulnerability detection to malware log interpretation 

and intelligent fuzz testing. 

 

Fig. 3. Applications of Large Language Models in software and system security, illustrating how LLMs enhance code vulnerability repair, malware 

behavior analysis, and binary fuzzing tasks. 

4.2 Network Security 

Incorporating a degree of linguistic and contextual awareness never before found in automated threat defense systems, 

Large Language Models (LLM) are transforming network security. Through the analysis of both structured and 

unstructured data across multiple layers of the network stack, LLMs can predict and detect anomalies, understand new 

attack vectors over time, and support security teams in proactive defense initiatives. 

1. IDS/NIDS (Intrusion Detection): LLMs have shown considerable improvements over existing signature-based and 

rule-based IDS systems. Conventional ID Systems usually depend on signatures that are defined in advance or static 

heuristics, rendering them powerless against zero-day attacks and polymorphic malware. On the other hand, LLMs like 

GPT or BERT-based classifiers learn traffic behaviors and semantic patterns over time windows, thus allowing them 

to identify subtle deviations such as the encrypted anomalies or protocol misuse observed in the network traffic [28]. 

This adaptability also allows them to be deployed in hybrid IDS/NIDS infrastructures, where LLMs can address 

eventual detection of suspicious behavior while traditional systems focus on known threats. 

2. Threat Intelligence and Anomaly Detection: LLMs read and parse unstructured data from threat intelligence feeds, 

blogs, security forums, and even dark web content, working to automate IOC, TTP extraction. The output can be threat 

summaries (summarized in an alerting protocol), trends over adversarial behavior patterns, and be ingested by SIEM 

(Security Information and Event Management) platforms for correlation at real-time [29]. Because they are not easily 

fooled by ambiguity or multilingual data sources, they are useful for global cybersecurity monitoring and advanced 

early warning systems. 

3. Automation of Penetration Testing: Penetration testing has long been a manual process executed by red teams, yet 

many of these tasks can now be automated at least to some extent with the use of large language models (LLMs). These 

models mimic tactics, techniques, and procedures (TTPs) of attackers by creating customized attack scripts, exploiting 

known vulnerabilities or generating phishing templates. Even more, they analyze results from pen-testing exercises 
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and provide recommendations on remediation strategies or priority patches significantly reducing time to redress 

security assessment [30]. 

This is interesting because LLMs can be leveraged to build a better mental model of networks enabling it to phase out 

towards a protection plan. Whereas existing systems rely on established (but often out-of-date) signatures or inflexible 

heuristics, LLMs have the ability to learn the behaviors of traffic adaptively in order to catch abnormal behavior ahead of 

time and determine whether or not to classify this as an emerging threat. And if that was not enough, they see application 

in other domains such as intrusion detection, generated threat intelligence, and even in red teaming simulations. As figure 

4 suggests, LLMs build on the traditional architecture ensuring core network security elements through contextual 

interpretation, intelligent, automated and reusable learning capabilities. 

 

Fig. 4. LLMs in Network Security: Enhancing intrusion detection, threat intelligence, and penetration testing through contextual traffic analysis, 

automated IOC extraction, and intelligent simulation of attack behavior. 

4.3 Information & Content Security 

Given that the majority of cybersecurity challenges derive from human-centered communications channels, LLMs have 

become essential tools for improving the security of information and content. A solid command of language understanding 

and contextual processing also allows greater accuracy in spotting phishing attacks, moderating malicious content, and 

performing forensic analysis. 

The prominent use case of LLMs is the detection of phishing and scams. Unlike traditional systems using static pattern-

matching or blacklisted keywords, LLMs like GPT-4 or fine-tuned versions of BERT (like RoBERTa) can understand 

linguistic nuances in our writing, social engineering cues, or impersonation of corporate language. The ability of LLMs to 

perform holistic assessments of email headers, message body content, and sender behavior enables the identification of 

more advanced phishing emails that pass through traditional filters [31]. 

LLMs are revolutionizing the way organizations moderate harmful content in communication channels. These models are 

great at understanding context and can catch the subtlety of toxic language, hate speech or harassment that a simple 

keyword-based approach would miss. For enterprise, LLMs are being used more and more as a way to enforce the 

company's policies on communication and have become practically essential in highly regulated environments. This helps 

a lot in maintaining the integrity and compliance in workplaces as they can identify sarcasm from offensive statements 

[32]. LLMs also assist digital forensics and access control, providing safety analysts with capabilities for complex log 

navigation, event correlation, and abnormal user behavior detection [14]. They even parse natural language compliance 

documents, which makes dynamic policy-driven access decision enforcement a breeze. As a result, it allows real-time 

response to and semi-automated forensic workflows [33]. 

Collectively, these applications show the emerging use-cases for LLMs beyond standard security offerings. Bridging 

unstructured human words and structured cybersecurity reasoning, LLMs reveal threats based on deception, 

misinformation, or context manipulation. These key contributions span the gamut from phishing detection (which exploits 

social media functionality) to forensic analysis of phishing attacks (the social media self-service is its almost explosive 

success) and further illustrate the utility and power of the LLM platform within modern content-centric security paradigm 

(see Figure 5). 
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Fig. 5. Key applications of LLMs in information and content security, including phishing detection, harmful content moderation, and forensic analysis 

for adaptive access control. 

4.4 Hardware Security 

With the increasing exploitation of low-level systems, LLMs are stepping into the realm of hardware security. While still 

in its infancy, this nascent discipline has particular relevance to embedded systems and the IoT (Internet of Things), where 

conventional defenses may run into exactly limited processing power and memory. At the same time, LLMs introduce 

powerful code understanding and generation capabilities, which open new venues for detecting, mitigating, and even 

preventing hardware-level vulnerabilities. 

One of the most promising applications is vulnerability detection and repair in the firmware and System-on-Chip (SoC) 

environments. Firmware, which runs below the level of the operating system, has traditionally been a challenge to analyze 

since it is often opaque and specific to platform. Properly trained LLMs, particularly when fine-tuned on assembly 

language, hardware logs, and binary structures, can learn to recognize firmware behavior and identify nonexistent 

instruction sequences or misconfigurations or rootkits. For example, an LLM can analyze bootloader code dumps [38] and 

flag potentially malicious instructions such as ones associated with persistence mechanisms, like Write Once Read Many 

(WORM) blocks, or memory remapping routines typically used in firmware-level attacks [34]. 

Similarly, LLMs can be applied to secure generation of hardware code, a topic of increasing significance in system design 

automation. LLMs, through prompt-based programming, can translate high-level specifications to syntactically correct and 

secure Hardware Description Language (HDL) such as Verilog or VHDL code. Hardware engineers can use so-called 

formal specification tools to check design logic with low human error and integrate security constraints (access control, 

fault tolerance, encryption modules) from the very first design step. Therefore, not only does LLM-assisted hardware 

development speed up prototype creation, but it also integrates proactive security principles into the very fabric of 

computing devices [35]. 

This evolution in LLM usage will have a tremendous impact on IoT ecosystems in which thousands of heterogeneous, and 

often insecure, devices operate in critical infrastructures, smart cities, and health care systems. As attackers increasingly 

targeting the firmware layer, the role of LLMs in defending that attack layer is becoming crucial. And with their 

capabilities in contextual code analysis & predictive repair, these LLMs can compress the firmware security audit lifecycle 

and offer rapid path to remediation. As depicted in Figure 6, LLMs currently have two roles in the hardware security 

landscape. On the one hand, they monitor firmware and SoC logs to look for suspicious instruction sequences and 

configuration anomalies, helping identify potential firmware-level threats in their early stages. On one hand, they help 
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foster secure HDL code generation from high-level requirements, thus ensuring that security constraints are considered 

and respected during the design stages. These features are particularly beneficial for embedded systems and resource-

constrained IoT devices, which often have limited capabilities for traditional security monitoring. 

 

Fig. 6. Applications of LLMs in hardware security, including firmware vulnerability detection via SoC log analysis, and secure HDL code generation 

from design specifications to ensure safe hardware architecture in embedded and IoT systems. 

4.5 Blockchain Security 

While blockchain technologies have been heralded as revolutionizing digital trust and decentralization, they in fact also 

create new vectors of vulnerability, most notably smart contracts and transaction integrity. In this context, we introduce 

LLMs as powerful allies in the fight to secure decentralized systems. By being able to understand the semantics of the 

purpose behind the code and the unstructured data in the blockchain, they are able to automate the vulnerabilities analysis 

and fraud detection and making the auditing user friendly. 

Detecting vulnerabilities in smart contracts is one of the most important fields in blockchain security. LLMs trained on 

Solidity, the dominant language for smart contracts, can recognize well-known security flaws, including reentrancy 

attacks, integer overflows/underflows, and access control violations. Traditional static analysis tools leverage known 

patterns in code to flag issues, but this results in a static set of flags and fixes; LLMs, on the other hand, excel at generalizing 

even risky logic from different codebases, enabling them to not only catch moments of weak logic, but to surface strong 

logic instead. They are also used for translating contract code to natural-language for human-readable audits or allowing 

non-technical stakeholders to verify the behavior of contracts [36]. 

Simultaneously, transaction modeling enhanced anomaly detection and has emerged as a hot topic in decentralized finance 

(DeFi). LLMs can also ingest and correlate on-chain metadata, including timestamps, gas fees, wallet histories, and token 

transfers, which can help uncover suspicious behaviors like front-running, wash trading, or sudden liquidity drains. LLMs 

help in producing contextual insights on new attack patterns that slide under the radar of rule-based systems [37] via 

unsupervised learning or fine-tuning. Such a feature is particularly useful for both compliance surveillance and real-time 

DeFi risk mitigation. 

To more effectively envision how LLMs can contribute to securing the blockchain infrastructure, we provide a layered 

architecture of the encompassing features (Figure 7), from a high-level description that abstracts critical attributes that will 

be matched into possible roles for LLMs and experts. At the outermost layer, different analysis methods are employed on 

blockchain artifacts like transactions streams and smart contracts. At the heart of this system lies the LLM, which serves 

as a sophisticated engine to interpret, analyze and secure this data. The knowledge of interpreting smart contract logic, 

identifying aberrations, and articulating risk vectors leads to a more secure and transparent blockchain ecosystem. 
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Fig. 7. Layered architecture showing how LLMs contribute to blockchain security through advanced analysis of smart contracts and transaction 

patterns, leading to improved safety and transparency in decentralized systems. 

In the previous sections we dived into the extensive use of LLMs around prominent areas in the cybersecurity industry, we 

can see that LLMs are so much more than just a detection mechanism. Moreover, although current deployments are mainly 

focused on threat detection and assistance to analysts, the real transformative potential of the LLMs appears to be related 

to proactive defense, `live' decision-making and autonomous security. This lays the groundwork for the next generation of 

cybersecurity the one where LLMs not only serve as detection tools but as intelligent agents that autonomously predict, 

prevent and respond to cyber threats. 

 

5. BEYOND DETECTION: TOWARD PROACTIVE AND AUTONOMOUS DEFENSE 

With the continuous evolution of Large Language Models (LLMs), the use of Juggling Cybersecurity is changing from 

traditional detection and division functions. Now, however, increasingly those models are being uses as proactive agents 

that predict threats, run attack vectors simulations, understand patterns, and drive autonomous decision making. This is a 

major paradigm shift from passive signature-based systems to intelligent and self-adaptive cyber security systems that can 

learn, infer, and act in real time. Now, one of the most critical enablers of such a big change is prompt engineering, which 

helps in directing LLMs with good multiple queries to carry out complex tasks, such as threat modeling and red-team 

scenario generation. Analysts can use contextual prompts to identify possible breach paths, highlight system weaknesses, 

and simulate actions an adversary might take. These capabilities turn LLMs into cognitive assistants that can also do 

strategic reasoning. For instance, they can be prompts prompting an LLM to consider the security posture of the given 

network topology [38] or providing it with some known configurations and asking to suggest attack vectors against these 

configurations. 

Moreover, few-shot and zero-shot learning approaches allow LLMs to adapt to new contexts using little or no training 

data. This is especially true in exception of disguised where tagged datasets are rare or history. Without such heavy 

retraining, LLMs can scan through user-behavior logs, recognize suspicious patterns on the command line, and detect 

underlying anomalies in network flows that are happening live. This enables the new potential for proactive threat hunting, 

especially for capturing emerging attack trends and zero-day exploits that evade traditional intrusion detection systems 

[39,40]. Besides passive analysis, LLMs can engage in adversarial simulations by mimicking attacker activity. They can 

also produce realistic phishing emails, malware, and SQL injection scripts that reflect real-world threats. Red teams can 

automate huge chunks of their penetration testing process with this capability, while defenders can utilize the same models 

to explore the generated attacks and improve their defensive modalities. This bi-directional simulation allows the 

mechanism for continuous adversarial training and cyber resilience enhancement [41]. 

As synthesized in Table V, LLMs contributes in various crucial aspects of proactive and autonomous cybersecurity 

strategies. These include hypothesis generation via prompting, few-shot anomaly detection and black-box simulation of 

adversarial behavior for robust defense testing. Collectively, these functionalities suggest that LLMs are moving from 

detection drivers to decision and response agents, laying the groundwork for an enlightened era of self-adaptive security 

ecosystems. 
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TABLE V. KEY ROLES OF LLMS IN PROACTIVE AND AUTONOMOUS CYBER DEFENSE 

Capability Description LLM Role Representative Use Cases 

Prompt-Based Threat 

Modeling 

Using structured prompts to identify 

vulnerabilities and simulate breach paths 

Cognitive Reasoning 

Agent 

Red teaming, secure architecture review 

Zero-/Few-Shot 
Threat Hunting 

Detecting anomalies with minimal labeled data Generalization from 
Sparse Data 

Insider threat detection, zero-day exploit 
recognition 

Adversarial 

Simulation 

Generating phishing emails, malware, and 

attack payloads for testing purposes 

Adaptive 

Attacker/Defender 

Penetration testing, social engineering 

scenario generation 

Autonomous 
Feedback Loops 

Self-learning through continuous simulation 
and policy refinement 

Dual-role Interaction 
Model 

Auto-hardening environments, dynamic 
security posture updating 

 

6. ENHANCING LLMS FOR CYBERSECURITY TASKS 

While LLMs offer remarkable natural language capabilities, their direct application to cybersecurity often requires targeted 

enhancements to meet the domain's complexity and specificity. This section explores practical strategies to adapt and 

extend LLM functionality through external augmentation and task-specific fine-tuning. These approaches help bridge the 

gap between general language understanding and the nuanced demands of cyber threat detection, analysis, and response. 

6.1 External Augmentation Techniques 

With LLMs capable of raw results generation, that may also not suit cyber needs, augmentation can help hone in the 

capabilities of LLMs to better suit the specialized needs in cyber. The external augmentation techniques enable LLMs to 

engage with structured knowledge repositories, adjust to security-centric queries, and work with other AI agents, providing 

meaningful responses to intricate threat environments. By doing this 1st Feature Augmentation helps to enrich model input 

by adding structured metadata, like IP logs, timestamps, protocol layers or user access patterns, in the natural language 

prompt. Such a hybrid input format allows LLMs to reason over linguistic as well as technical cues to achieve more 

accurate threat interpretation and action [41]. 2nd Knowledge Retrieval frameworks are frameworks that couple an LLM 

with an external security knowledge base (e.g., MITRE ATT&CK, CVE repositories), which allow models to pull real-

time threat intelligence during inference. This is known as retrieval-augmented generation (RAG) which helps the models 

stay relevant without frequent fine-tuning [42]. 3rd: Inter-model Interaction LLMs are paired to symbolic reasoning 

engines, GNNs, or rule-based expert systems to check and refine outputs An LLM could propose a mitigation, for instance, 

and a formal verification engine could be used to assert that it is realizable in a given system architecture [43]. 4th Task-

Adaptive TrainingFine-tuning LLMs on cybersecurity-specific corpora, including vulnerability databases, malware 

analysis reports, or intrusion detection logs. This adaptation allows the model to map general language understanding with 

technical specificity, improving overall classification and prediction performance in cybersecurity domains [44]. 

6.2 Challenges of Fine-Tuning for Security Tasks 

While these advancements offer great promise, the adaptation of LLMs for cybersecurity also presents particular 

challenges. One of the greatest issues is overfitting, stemming from the small size and low diversity of labelled 

cybersecurity datasets. High-quality security data can often be scarce, sensitive, or proprietary, especially when it comes 

to attack traces, malicious payloads, or insider threat logs [45]. One major limitation of fine-tuning existing models is the 

challenge it presents for general readable language capabilities through the risk of catastrophic forgetting through splitting 

the training data sets into domain-specific narrow data. This issue becomes especially pronounced when maintaining the 

line between language fluency and technical correctness in threat interpretation [46]. 

And adversarial robustness is still a big problem. When provided with adversarial queries or poisoned samples, LLMs can 

generate fake-money or false outputs. In cybersecurity applications, such failures could lead to missed detections or 

erroneous and insecure recommendations [47]. The moral side is also not to be ignored. The approach does create privacy 

issues and compliance challenges, however, as training on real-world threat intelligence could expose sensitive 

information about an organization. Additionally, there are dual-use dilemmas involved with deploying LLMs that can 

simulate attacks or generate malware that need careful governance [48]. 

The augmentation methods beyond traditional fine tuning help the researchers and practitioners to achieve the best 

performance of the LLMs in the cybersecurity applications. These externally augmentations from structured feature 

placement to external knowledge retrieval enable LLMs to make more contextual and domain-specific decision. 

Additionally, recent work with collaborative architectures in which LLMs are embedded among other models or rules-

based engines have shown potential to overcome limitations related to reliability and interpretability. Although task-

adaptive training is critical to high-risk security environments, it is limited by dependent on the amount of available labeled 

data, which is often scarce. Table VI summarizes these augmentation strategies and relevant cybersecurity use cases, 

elucidating how they work synergistically to enhance the objectives of LLMs from generic language processors to domain-

specific cybersecurity agents. 
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TABLE VI. KEY AUGMENTATION STRATEGIES FOR IMPROVING LLM PERFORMANCE IN CYBERSECURITY APPLICATIONS 

Technique Description Cybersecurity Application 

Feature 

Augmentation 

Incorporating structured security metadata with natural 

language prompts 

Enabling contextual log analysis and behavior 

correlation 

Knowledge Retrieval Accessing external sources like MITRE ATT&CK or CVE 
during inference 

Real-time threat intelligence injection and contextual 
reasoning 

Inter-model 

Interaction 

Collaborating with rule-based engines or GNNs to validate 

LLM output 

Refining LLM decisions for anomaly detection and 

access policies 

Task-Adaptive 
Training 

Fine-tuning on cybersecurity-specific datasets and technical 
corpora 

Enhancing precision in malware detection, vulnerability 
analysis 

 

7. OPPORTUNITIES AND FUTURE DIRECTIONS 

As LLMs continue to mature, their ability to transform the cybersecurity landscape goes far beyond detection and response. 

So the future applications predict, more distributed, resilient and real-time context-aware systems, where the LLMs will 

be the backbone of all digital infrastructure security.” LLM-powered analysis and decision making could lend itself to one 

such transformative direction: self-healing cybersecurity systems architectures that can autonomously monitor, analyze and 

remediate vulnerabilities. Such advanced systems utilize natural language reasoning to map symptoms to root causes, 

facilitating automatic execution of mitigation actions, without human intervention, and bringing threat response times down 

to the order of minutes in critical environments [49] 

A more interesting frontier in this space is explainable and interpretable LLMs in the context of security operations. 

Powerful as they are, modern models are quite literally black boxes, a hindrance in high-risk areas where explainability 

matters. New initiatives seek to construct LLMs capable of justifying their predictions in natural language, offering step-

by-step reasoning, and summarizing their decisions in human-readable forms. Such cheap availability of capabilities can 

increase trust among cybersecurity analysts while automatically aligning these capabilities with compliance requirements, 

which is particularly relevant in regulated sectors [50]. Moreover, LLMs are enabling autonomous agents and co-pilots in 

cyber intelligent assistants that can help defenders with a wide range of tasks. These agents could oversee threat feeds, 

triage alerts, propose mitigation others, and even mimic attack chains. Encompassing both cloud and on-premise 

environments, they promise the scaling of human expertise, serving as intelligent intermediaries between multiple sources 

of data and decision-makers [51]. 

The integration of LLMs with existing cybersecurity infrastructures (SIEM; SOAR; edge computing) will bring forth new 

capabilities. Embedding LLMs at the edge enables real-time decision-making in latency-sensitive environments, including 

industrial IoT or autonomous systems. Combining them with SIEM and SOAR platforms allows automating triage 

workflows, accelerating the incident response, and enriching alerts with contextual information derived from large 

volumes of unstructured corpora [52]. 

Taken together, these trends point toward an increasingly intelligent, adaptive, and self-governing cybersecurity 

ecosystem. LLMs have the potential to transform the very nature of security operationalization, shifting the paradigm from 

reactive defense to proactive resilience through components of natural language understanding, autonomous reasoning, 

and real-time interaction. Researchers and practitioners are examining multiple forward-looking applications to leverage 

the transformative potential of Large Language Models (LLMs) in cybersecurity. This involves building self-healing 

systems that can autonomously remediate security incidents, developing explainable models to address the issue of 

transparency, as well as integrating LLMs into real-time operational settings such as security information and event 

management (SIEM), security orchestration, automation, and response (SOAR), and edge computing environments. 

Emerging opportunities and their forecasted impact on cybersecurity operations are shown in Table VII. 

TABLE VII. EMERGING OPPORTUNITIES AND FUTURE DIRECTIONS FOR LLMS IN CYBERSECURITY 

Opportunity Description Impact in Cybersecurity 

Self-Healing Systems LLMs autonomously diagnose and remediate 

system faults or vulnerabilities 

Enables faster recovery, reduces human workload, and 

increases system resilience 

Explainable and 
Interpretable LLMs 

Models provide reasoning and human-readable 
justifications for outputs 

Enhances trust, improves compliance, and supports 
auditability in security operations 

Autonomous Cyber Agents 

& Co-Pilots 

Intelligent assistants that support security analysts 

in real-time 

Accelerates threat analysis, prioritization, and response with 

contextual recommendations 

Integration with SIEM, 
SOAR & Edge 

LLMs embedded in operational security tools and 
edge devices 

Boosts real-time alert enrichment, automation, and low-
latency decision-making 

 

8. CHALLENGES AND OPEN ISSUES 

As LLMs proliferate within cybersecurity systems, many of these same technical and ethical challenges will need to be 

resolved before these models can realistically be trusted in real-time mission-critical defense strategies. While they do 
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provide remarkable capabilities in understanding natural language and generating intelligent responses, LLMs can be 

subject to domain overfitting, adversarial manipulation, and legal ambiguity. These issues run deeper than merely technical 

shortcomings; they touch on issues of trust, interpretability, accountability, and compliance. This section enlists the major 

open issues that need to be resolved by researchers, developers, and policymakers, to ensure a safe and effective deployment 

of LLMs in cybersecurity-related contexts. 

1. Generalization and Robustness Across Domains: LLMs generally show diminished performance when faced with tasks 

that diverge from their training distribution. This is problematic for cybersecurity work as the building blocks of 

information in the form of system logs, network packets, firmware traces and all things binary do not resemble 

traditional natural language text. With improper domain adaptation techniques， models become insensitive to fine-

grained anomalies and it also generates numerous false-positives, which makes detection performance less effective 

and less credible. Improving robustness in diverse operational configurations is still a major research area. 

2. Trustworthiness, Hallucination, and Adversarial Usage: LLMs can hallucinate produce statistically plausible but 

incorrect or misleading outputs. Such errors in security-critical environments can result in defective diagnoses, missed 

real-world attacks, or spread of inaccurate threat intelligence. Furthermore, adversaries can construct malicious by-

products (e.g., adversarial prompts) that will either drive model outputs, produce harmful contents, or avoid detection. 

This makes it crucial to verify the output, and improve prompt resilience before deploying to the real-world. 

3. Ethics, legality and accountability As LLMs are more broadly employed for automated decision-making e.g. where to 

flag an account for abuse, deny access, or prioritize alerts it's unclear how accountability and compliance will work. 

Who is responsible if a model sends a false positive or wrongly identifies a threat? Furthermore, fine-tuning using 

sensitive threat intelligence data may violate privacy regulations (e.g., GDPR), especially if models learn to memorize 

or regenerate sensitive information. Will help address the dual-use challenge of LLMs their potential as both a 

protective or offensive tool for systems that is key for ethical AI governance. 

In this context, Table 8 highlights the most significant limitations and ethical challenges in the real-world implementation 

of LLMs in cybersecurity and the potential impact on security operations as a result. This tabular view serves to enhance 

awareness of the multi-dimensional risks which can include technical deficiencies (e.g., hallucination), legal issues, and 

regulatory dilemmas to be aggressively mitigated to ensure the safe and responsible adoption of LLMs in security-critical 

environments. 

TABLE VIII. SUMMARY OF CHALLENGES AND OPEN ISSUES IN LLM-DRIVEN CYBERSECURITY 

Challenge Description Implications 

Generalization & Robustness Difficulty adapting to unseen or domain-specific 

security data 

Lower detection accuracy, increased false negatives 

Hallucination & Adversarial 
Prompts 

Susceptibility to generating incorrect or 
manipulated outputs 

Misinformation, attack vector exploitation 

Trust & Interpretability Opaque model reasoning and black-box decision-

making 

Reduced analyst confidence, lack of transparency 

Ethical & Legal Risks Privacy violations, consent issues, dual-use misuse Regulatory non-compliance, liability, reputational and 
ethical concerns 

 

9. COMPARATIVE ANALYSIS AND DISCUSSION 

Large Language Models (LLMs) have seen various applications in cybersecurity across software and networks to content 

moderation, hardware systems, and blockchain platforms. While these models possess several strengths around language 

understanding, code understanding, and zero-shot learning, they also bring along many operational and security 

considerations. This section distills a comparative overview of LLM adoption across the major cybersecurity domains and 

considers the strengths and weaknesses of existing approaches. 

LLMs excel at working with unstructured threat data, providing context to logs, behaviors, and attack patterns in ways that 

classical rule-based systems simply cannot. As an example, using models such as GPT and similar to BERT can detect 

code-level vulnerabilities [53], automate penetration testing [54] and summarize forensic logs [55]. However, there are still 

major drawbacks namely, hallucination of incorrect outputs, susceptibility to adversarial prompts, and lack of grounding 

in domain knowledge [56, 57]. To provide a sense of the landscape of LLM applications, Table IX includes a comparative 

summary of typical use cases, strengths, and remaining challenges across five core cybersecurity domains. 

TABLE IX. COMPARATIVE OVERVIEW OF LLM APPLICATIONS ACROSS CYBERSECURITY DOMAINS 

Domain Key Applications Strengths Limitations 

Software & System 

Security 

Vulnerability detection, patch 

generation, malware log mining 

Deep code comprehension, 

automation of secure fixes 

Limited in binary and legacy code 

understanding 

Network Security Intrusion detection, anomaly spotting, 

attack simulation 

Handles real-time flow, adapts to 

new threats 

Prone to adversarial evasion; 

difficulty with encrypted traffic 
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Information & 

Content Security 
Phishing detection, moderation, access 

pattern analysis 
Linguistic precision, effective 

against social engineering 
May misclassify nuanced or context-

dependent text 

Hardware Security Firmware analysis, secure HDL 

generation 

Enables secure-by-design 

development 

Lacks pretrained knowledge on low-

level hardware data 

Blockchain Security Smart contract auditing, DeFi 
anomaly detection 

Understands Solidity, detects logic 
bugs and exploits 

Struggles with large-scale 
transactional behavior analysis 

Despite these limitations, the trajectory of LLM evolution points toward their increasing autonomy and integration with 

traditional security infrastructure. Hybrid systems combining LLMs with symbolic engines, knowledge graphs, or formal 

verification tools may offer enhanced trustworthiness and interpretability in mission-critical environments [58-60]. 

 

10. CONCLUSION 

This survey focused on investigating the impact of Large Language Models (LLMs) on cybersecurity, enabling an evolution 

from traditional detection approaches to proactive, intelligent and autonomous cyber-defense strategies. LLMs have shown 

great promise in a number of areas including vulnerability discovery in source code, network intrusion detection, phishing 

detection and defense, malware behavior modeling, contract auditing, and adversarial simulation, due to their sophisticated 

language understanding and context modeling capabilities. Architectures such as encoder-only (BERT, etc.), decoder-only 

(GPT, etc.), and encoder-decoder (T5, etc.) have allowed for their integration into cyber technical solutions by way of 

analysis/generation tasks. The threat landscape is always in flux, but LLMs have exhibited great efficacy in zero-shot and 

few-shot learning, which enables security teams to act on novel attack vectors with minimal historical data. In addition, 

methods like prompt engineering, retrieval-augmented generation, inter-model collaboration, and task-adaptive training 

have augmented their capabilities in specialized security areas. Nevertheless, still challenges including domain 

generalization, adversarial manipulation, hallucination, and ethics namely data privacy, explainability, and dual-use 

concerns remain prominent hurdles to their widespread implementation. These limitations reinforce the need to construct 

LLM systems that are robust, interpretable, and accountable for working in high-stake environments in the field of 

cybersecurity. Going forward, the path highlights advancements towards self-healing essences, security-savvy 

autonomous agents, and a closer tether between LLMs and SIEM, SOAR, and edge compute frameworks. In an era where 

LLMs are rapidly evolving, treating them not just as intelligent assistants, but also as self-directed cyber defenders, will 

reimagine the very framework of security operations. In the end, the responsible and collaborative development of LLM-

empowered security frameworks will be the foundation for adaptive and resilient cyber ecosystems that can counter the 

new ideals of sophistication being directed towards our systems. 
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